Learn More
The developing vertebrate gut tube forms a reproducible looped pattern as it grows into the body cavity. Here we use developmental experiments to eliminate alternative models and show that gut looping morphogenesis is driven by the homogeneous and isotropic forces that arise from the relative growth between the gut tube and the anchoring dorsal mesenteric(More)
Long leaves in terrestrial plants and their submarine counterparts, algal blades, have a typical, saddle-like midsurface and rippled edges. To understand the origin of these morphologies, we dissect leaves and differentially stretch foam ribbons to show that these shapes arise from a simple cause, the elastic relaxation via bending that follows either(More)
Many species of macroalgae have flat, strap-like blades in habitats exposed to rapidly flowing water, but have wide, ruffled "undulate" blades at protected sites. We used the giant bull kelp, Nereocystis luetkeana, to investigate how these ecomorphological differences are produced. The undulate blades of N. luetkeana from sites with low flow remain spread(More)
The impressive agility of living systems seems to stem from modular sensing, actuation and communication capabilities, as well as intelligence embedded in the mechanics in the form of active compliance. As a step towards bridging the gap between man-made machines and their biological counterparts, we developed a class of soft mechanisms that can undergo(More)
We study the linear and nonlinear elastic behavior of amorphous systems using a two-dimensional random network of harmonic springs as a model system. A natural characterization of these systems arises in terms of the network coordination (average number of springs per node) relative to that of a marginally rigid network deltaz: a floppy network has(More)
Despite the common use of the blooming metaphor, its floral inspiration remains poorly understood. Here we study the physical process of blooming in the asiatic lily Lilium casablanca. Our observations show that the edges of the petals wrinkle as the flower opens, suggesting that differential growth drives the deployment of these laminar shell-like(More)
[1] We give an explanation for the polarity, localiza-tion, shape, size, and initiation of subduction zones on Earth. By considering a soft, thin, curved litho-spheric cap with either elastic or viscous rheology supported by a thick, nearly incompressible mantle, we find two different characteristic subduction geometries arise depending on boundary(More)
This paper presents a new simulation method for flower blossom, which is based on a biological observation that flower opening is caused by a boundary-dominant morphological transition in a curved lamina. We use an elastic triangular mesh to represent a flower petal and adopt the in-plane expansion to induce the global bending. Out-of-plane curl plays an(More)
An amphibious robot with straight compliant flipper-legs can conquer various amphibious environments. The robot can rotate its flipper-legs and utilize their large deflection to walk on rough terrain, and it can oscillate the straight flipper-legs to propel itself underwater. This paper focuses on the dynamics of the compliant straight flipper-legs during(More)
As an indispensible material for modern society, natural rubber possesses peerless mechanical properties such as strength and toughness over its artificial analogues, which remains a mystery. Intensive experimental and theoretical investigations have revealed the self-enhancement of natural rubber due to strain-induced crystallization. However a rigorous(More)
  • 1