Learn More
The human opportunistic pathogen Pseudomonas aeruginosa strain PA14 infects both plants and animals. Previously, using plants to screen directly for P. aeruginosa virulence-attenuated mutants, we identified a locus, pho34B12, relevant in mammalian pathogenesis. Here, nonsense point mutations in the two opposing ORFs identified in the pho34B12 locus revealed(More)
By exploiting the ability of Pseudomonas aeruginosa to infect a variety of vertebrate and nonvertebrate hosts, we have developed model systems that use plants and nematodes as adjuncts to mammalian models to help elucidate the molecular basis of P. aeruginosa pathogenesis. Our studies reveal a remarkable degree of conservation in the virulence mechanisms(More)
The vast evolutionary gulf between plants and animals--in terms of structure, composition, and many environmental factors--would seem to preclude the possibility that these organisms could act as receptive hosts to the same microorganism. However, some pathogens are capable of establishing themselves and thriving in members of both the plant and animal(More)
Background: Even after several years of study, the intra-operative diagnosis of Malignant Hyperthermia (MH) and the approach to anesthesia in MH-susceptible individuals has remained a challenge. In this study we present the pre-operative and intra-operative findings of development and progression of MH in a porcine model that was assigned for heart(More)
Genetic approaches to analyzing neuronal circuits and learning would benefit from a technology to first deliver a specific gene into presynaptic neurons, and then deliver a different gene into an identified subset of their postsynaptic neurons, connected by a specific synapse type. Here, we describe targeted gene transfer across a neocortical glutamatergic(More)
Because of the numerous types of neurons in the brain, and particularly the forebrain, neuron type-specific expression will benefit many potential applications of direct gene transfer. The two most promising approaches for achieving neuron type-specific expression are targeted gene transfer to a specific type of neuron and using a neuron type-specific(More)
Multiple applications of direct gene transfer into neurons require restricting expression to glutamatergic neurons, or specific subclasses of glutamatergic neurons. Thus, it is desirable to develop and analyze promoters that support glutamatergic-specific expression. The three vesicular glutamate transporters (VGLUTs) are found in different populations of(More)
BACKGROUND Hearts preserved ex vivo at extreme hypothermia (4°C) undergo time-dependent irreversible injury. Our studies using a novel solution, Somah, suggest that hearts are viably preserved at 21°C. In this study we evaluate the relative efficacy of Somah for preservation of hearts at 21°C when compared with the clinically used Celsior and University of(More)
OBJECTIVES It is well established that acute pancreatitis (AP) often causes diabetes mellitus. However, whether pre-existing diabetes is associated with the development of AP remains unknown. To clarify the association of pre-existing diabetes and the development of AP, we carried out a meta-analysis of observational studies. METHODS A computerized(More)
Neuronal circuits comprise the foundation for neuronal physiology and synaptic plasticity, and thus for consequent behaviors and learning, but our knowledge of neocortical circuits is incomplete. Mapping neocortical circuits is a challenging problem because these circuits contain large numbers of neurons, a high density of synapses, and numerous classes and(More)