Learn More
Dirac electronic materials beyond graphene and topological insulators have recently attracted considerable attention. Cd3As2 is a Dirac semimetal with linear dispersion along all three momentum directions and can be viewed as a three-dimensional analogue of graphene. By breaking of either time-reversal symmetry or spatial inversion symmetry, the Dirac(More)
Riemerella anatipestifer infections cause major economic losses in the duck industry. In this study, a trivalent inactivated vaccine of R. anatipestifer, including strains CH3 (serotype 1), NJ3 (serotype 2), and HXb2 (serotype 10), was developed. Animal experiments showed that the ducks that received two immunizations with the vaccine were 100% protected(More)
Avian pathogenic Escherichia coli (APEC) causes avian colibacillosis, the most significant infectious bacterial disease of poultry worldwide. LuxS, the product of the luxS gene, mediates the quorum sensing (QS) mechanism. This involves the production of autoinducer-2 (AI-2), which regulates important physiological traits and a variety of adaptive processes(More)
Brucella abortus is a Gram-negative, facultative intracellular bacterial pathogen of human and other animals. Brucella lipopolysaccharide has been identified as an important virulence factor. In this study, the ABC transporter ATPase gene (BAB1_0542) of B. abortus strain S2308 was inactivated by deleting a 446-bp fragment from the gene, thereby generating(More)
We study the possibility of realizing topological phases in graphene with randomly distributed adsorbates. When graphene is subjected to periodically distributed adatoms, the enhanced spin-orbit couplings can result in various topological phases. However, at certain adatom coverages, the intervalley scattering renders the system a trivial insulator. By(More)
Three-dimensional (3D) Dirac semimetals, which possess 3D linear dispersion in the electronic structure as a bulk analogue of graphene, have lately generated widespread interest in both materials science and condensed matter physics. Recently, crystalline Cd3As2 has been proposed and proved to be a 3D Dirac semimetal that can survive in the atmosphere.(More)
I. Theoretical background For the 5 quintuple layers Bi 2 Se 3 topological insulator (TI) films, the surface states are weakly affected by the applied parallel magnetic field. For the parallel field magneto-resistance (MR) of the thin films, the main contribution is the phase factor exp e i Adr c     arising from the bulk states. The cooperon(More)
The Griffiths singularity in a phase transition, caused by disorder effects, was predicted more than 40 years ago. Its signature, the divergence of the dynamical critical exponent, is challenging to observe experimentally. We report the experimental observation of the quantum Griffiths singularity in a two-dimensional superconducting system. We measured the(More)
We study the possibility of realizing robust helical surface states in Z(2) = 0 systems. We find that the combination of anisotropy and finite-size confinement leads to the emergence of robust helical edge states in both two-dimensional and three-dimensional Z(2) = 0 systems. By investigating an anisotropic Bernevig-Hughes-Zhang model in a finite sample, we(More)
The Goos-Hänchen (GH) shift and the Imbert-Fedorov (IF) shift are optical phenomena which describe the longitudinal and transverse lateral shifts at the reflection interface, respectively. Here, we predict the GH and IF shifts in Weyl semimetals (WSMs)-a promising material harboring low energy Weyl fermions, a massless fermionic cousin of photons. Our(More)