Haiqing Lin

  • Citations Per Year
Learn More
Polymer membranes are attractive for molecular-scale separations such as hydrogen purification because of inherently low energy requirements. However, membrane materials with outstanding hydrogen separation performance in feed streams containing high-pressure carbon dioxide and impurities such as hydrogen sulfide and water are not available. We report(More)
Antigen presenting cell (APC) gene delivery is a promising avenue for modulating immunological outcomes toward a desired state. Recently, our group developed a delivery methodology to elicit targeted and elevated levels of APC-mediated gene delivery. During these initial studies, we observed APC-specific structure-function relationships with the vectors(More)
Hydrogels have been widely utilized to enhance the surface hydrophilicity of membranes for water purification, increasing the antifouling properties and thus achieving stable water permeability through membranes over time. Here, we report a facile method to prepare hydrogels based on zwitterions for membrane applications. Freestanding films can be prepared(More)
Membrane technology has emerged as an attractive approach for water purification, while mitigation of fouling is key to lower membrane operating costs. This article reviews various materials with antifouling properties that can be coated or grafted onto the membrane surface to improve the antifouling properties of the membranes and thus, retain high water(More)
Functionalized 3D nanographenes with controlled electronic properties have been synthesized through a multistep organic synthesis method and are further used as promising anode materials for lithium-ion batteries, exhibiting a much increased capacity (up to 950 mAh g-1 ), three times higher than that of the graphite anode (372 mAh g-1 ).
Industrial membranes comprised of a thin selective layer (<100 nm) requires a gutter layer (<100 nm) between the selective layer and the porous support to achieve high permeance for gas separation. The gutter layer materials must be carefully chosen to enhance overall membrane performance, i.e., high permeance and high selectivity. However, the experimental(More)
Greenhouse gas CO2 emissions to the atmosphere are believed to be the primary reason for the global warming. One effective way to mitigate CO2 emissions is to capture CO2 from post-combustion flue gas in coal-fired power plants. Membrane technology has been widely explored for this application due to its high energy-efficiency. Current membrane materials(More)
Polymeric membranes are important materials for efficient sieving of targeted components at the molecular level and have made significant advancement in many industrial applications such as biofuel production, water purification, fuel combustion, and carbon dioxide capture. Although their separation efficiencies have been widely investigated, lack of more(More)
This Concept examines strategies to design advanced polymers with high CO2 permeability and high CO2 /N2 selectivity, which are the key to the success of membrane technology for CO2 capture from fossil fuel-fired power plants. Specifically, polymers with enhanced CO2 solubility and thus CO2 /N2 selectivity are designed by incorporating CO2 -philic groups in(More)