Learn More
Reversible luminescence photoswitching upon photochromic reactions with excellent reproducibility is achieved in a new inorganic luminescence material: Na(0.5)Bi(2.5)Nb2O9: Pr(3+) (NBN:Pr) ferroelectric oxides. Upon blue light (452 nm) or sunlight irradiation, the material exhibits a reversible photochromism (PC) performance between dark gray and green(More)
Reversible luminescence modulation upon photochromic reactions with excellent reproducibility was achieved from Eu(3+) doped Bi2.5Na0.5Nb2O9 multifunctional ferroelectrics. The material exhibits strong sensitivity to visible light or sunlight with fast response time without inducing any structural changes.
High luminescent switching contrast of photochromic materials is extremely important in improving the sensitivity and resolution of optical switches and high-density optical data storage devices. To date, conventional methods, such as tuning absorption and emission bands based on electron or resonance energy transfer mechanisms in well-known organic(More)
A luminescence ferroelectric oxide, Na(0.5)Bi(2.5)Nb2O9 (NBN), system with bismuth layer structure introduced by lanthanide ion (Er(3+)) has been demonstrated to exhibit reversible, high-contrast luminescence modulation (95%) and excellent fatigue resistance based on visible-light-driven photochromism (407 nm or sunlight). The coloration and decoloration(More)
Improving levels of healthcare service to enhance patient care are not only what patients’ demands of medical staff, but also what the medical staff demands of the hospital managers. The practical experiences of Xuzhou Central Hospital have proved that a carefully designed hospital culture helps to mobilize the enthusiasm of medical staff, improve patient(More)
  • 1