Learn More
Genome-wide identification of grapevine NAC domain genes and investigation of their chromosome locations, gene structures, duplication, evolution, phylogeny and expression profiles. Grapevine is a widely used fruit crop. NAC (NAM, ATAF1/2 and CUC2) domain genes are plant-specific transcription factors (TFs) that comprise a conserved NAM domain in the(More)
Genetic mapping and QTL detection are powerful methodologies in plant improvement and breeding. Construction of a high-density and high-quality genetic map would be of great benefit in the production of superior grapes to meet human demand. High throughput and low cost of the recently developed next generation sequencing (NGS) technology have resulted in(More)
Grape is one of the most important fruit crops worldwide. The suitable geographical locations and productivity of grapes are largely limited by temperature. Vitis amurensis is a wild grapevine species with remarkable cold-tolerance, exceeding that of Vitis vinifera, the dominant cultivated species of grapevine. However, the molecular mechanisms that(More)
WRKY transcription factors are one of the largest families of transcriptional regulators in plants. WRKY genes are not only found to play significant roles in biotic and abiotic stress response, but also regulate growth and development. Grapevine (Vitis vinifera) production is largely limited by stressful climate conditions such as cold stress and the role(More)
Environmental stress has a great impact on fruit yield and quality in grapes. Understanding mechanisms underlying stress tolerance in plants is useful for grape breeding. Here, a CBF gene, designated VaCBF4, was identified in V. amurensis. The expression of VaCBF4 was induced by several abiotic stresses, including cold, exogenous abscisic acid (ABA),(More)
BP feed-forward network is the most widely applied neural network. There are a number of algorithms currently. The respective strengths and weaknesses of 8 kinds of BP algorithm provided by the neural network toolbox in MATLAB are studied in the paper in order to choose a more appropriate and faster algorithms under different conditions. Based on this, the(More)
BACKGROUND Asymmetric zygotic division in higher plants results in the formation of an apical cell and a basal cell. These two embryonic cells possess distinct morphologies and cell developmental fates. It has been proposed that unevenly distributed cell fate determinants and/or distinct cell transcript profiles may be the underlying reason for their(More)
Grapevine is an important fruit crop that has undergone a long history of evolution. Analysis of the whole genome sequence of grapevine has revealed presence of an early palaeo-hexaploid along with three complements. Thus, gene duplication and genome expansion are common in this genome. In this study, we identified 17,922 duplicated genes in the whole(More)
Low temperature is one of the most important environmental factors that limits the geographical distribution and productivity of grapevine. However, the molecular mechanisms on how grapevine responds to cold stress remains to be elucidated. MicroRNAs (miRNAs) are a class of endogenous small non-coding RNAs that play an essential role during plant(More)
Recent advances demonstrate that epigenome changes can also cause phenotypic diversity and can be heritable across generations, indicating that they may play an important role in evolutionary processes. In this study, we analyzed the chromosomal distribution of several histone modifications in five elite maize cultivars (B73, Mo17, Chang7-2, Zheng58, ZD958)(More)