Hailong Ning

Learn More
Quantitative trait loci (QTLs) identified so far in soybean were mainly derived in the final stage of plant development, which did not apply to the exploitation of genetic effects that were expressed during a specific developmental stage. Thus, the aim of this study was to identify conditional QTLs associated with yield traits at a specific developmental(More)
Selective thermal emission in a useful range of energies from a material operating at high temperatures is required for effective solar thermophotovoltaic energy conversion. Three-dimensional metallic photonic crystals can exhibit spectral emissivity that is modified compared with the emissivity of unstructured metals, resulting in an emission spectrum(More)
As sensors, wireless communication devices, personal health monitoring systems, and autonomous microelectromechanical systems (MEMS) become distributed and smaller, there is an increasing demand for miniaturized integrated power sources. Although thin-film batteries are well-suited for on-chip integration, their energy and power per unit area are limited.(More)
We present a micromanufacturing method for constructing microsystems, which we term ‘micro-masonry’ based on individual manipulation, influenced by strategies for deterministic materials assembly using advanced forms of transfer printing. Analogous to masonry in construction sites, micro-masonry consists of the preparation, manipulation, and binding of(More)
A deterministic graphene-sandwiched Li-ion battery electrode consisting of an integrated 3D mesostructure of electrochemically active materials and graphene is presented. As demonstrations, electrodes with active nanomaterials that coat (V2 O5 @graphene@V2 O5 cathode) or are coated by (graphene@Si@graphene anode) graphene are fabricated. These electrodes(More)
IO N Control of spontaneous emission (SE) is central to many applications involved with photon management including light emitting sources, [ 1–3 ] solar energy [ 4 , 5 ] and quantum information processing. [ 6 , 7 ] For example, control of the direction of SE may facilitate more effi cient light extraction in optical display devices. Spectral(More)
A high full-electrode basis capacity secondary battery anode consisting of a template-free 3D nanostructured Fe3O4/C composite is presented. On a full electrode basis, the nanocomposite exhibits attractive electrochemical performance including a volumetric capacity of 1064 mAh cm(-3), which significantly exceeds both the practical (≈300 mAh cm(-3)) and(More)
Materials synthesis often provides opportunities for innovation. We demonstrate a general low-temperature (260°C) molten salt electrodeposition approach to directly electroplate the important lithium-ion (Li-ion) battery cathode materials LiCoO2, LiMn2O4, and Al-doped LiCoO2. The crystallinities and electrochemical capacities of the electroplated oxides are(More)
High volumetric energy density secondary batteries are important for many applications, which has led to considerable efforts to replace the low volumetric capacity graphite-based anode common to most Li-ion batteries with a higher energy density anode. Because most high capacity anode materials expand significantly during charging, such anodes must contain(More)
Here we demonstrate, via a modified transferprinting technique, that electrochemically fabricated porous silicon (PSi) distributed Bragg reflectors (DBRs) can serve as the basis of high-quality hybrid microcavities compatible with most forms of photoemitters. Vertical microcavities consisting of an emitter layer sandwiched between 11and 15-period PSi DBRs(More)