Learn More
Chloroplast development, maintenance and function depend on the coordinated expression of chloroplast and nuclear genes. The retrograde chloroplast signals are essential in coordinating nuclear gene expression. Although the sources of signals in chloroplasts have been identified and the associated transcription factors in the nucleus extensively studied,(More)
Light is a major environmental factor regulating flowering time, thus ensuring reproductive success of higher plants. In contrast to our detailed understanding of light quality and photoperiod mechanisms involved, the molecular basis underlying high light-promoted flowering remains elusive. Here we show that, in Arabidopsis, a chloroplast-derived signal is(More)
Avian hepatitis E virus (avian HEV) was recently discovered in chickens with hepatitis-splenomegaly syndrome in the United States. The open reading frame 2 (ORF2) protein of avian HEV has been shown to cross-react with human and swine HEV ORF2 proteins, and immunodominant antigenic epitopes on avian HEV ORF2 protein were identified in the predicted(More)
Phosphatidylinositol 3-kinases (PI3Ks) play a critical role in regulating B cell receptor- and T cell receptor-mediated signaling. However, their role in natural killer (NK) cell development and functions is not well understood. Using mice expressing p110 delta(D910A), a catalytically inactive p110 delta, we show that these mice had reduced NK cellularity,(More)
Chloroplast retrograde signals play important roles in coordinating the plastid and nuclear gene expression and are critical for proper chloroplast biogenesis and for maintaining optimal chloroplast functions in response to environmental changes in plants. Until now, the signals and the mechanisms for retrograde signalling remain poorly understood. Here we(More)
We set out to test the hypothesis that interleukin-22 (IL-22), a cytokine crucial for epithelial cell homeostasis and recovery from tissue injury, would be protective during influenza virus infection. Recent studies have identified phenotypically and functionally unique intestinal NK cells capable of producing the cytokine IL-22. Unlike gut NK cells that(More)
Natural killer (NK) cells have a critical role in clearing influenza virus, which primarily infects the lung epithelial cells. However, the ability of influenza virus to infect and manipulate NK cells has not been studied. In this context, we hypothesized that influenza virus can target NK cells leading to a functional impairment in their ability to mediate(More)
Genetic mutation and reassortment of influenza virus gene segments, in particular those of hemagglutinin (HA) and neuraminidase (NA), that lead to antigenic drift and shift are the major strategies for influenza virus to escape preexisting immunity. The most recent example of such phenomena is the first pandemic of H1N1 influenza of the 21st century, which(More)
Despite countermeasures against influenza virus that prevent (vaccines) and treat (antivirals) infection, this upper respiratory tract human pathogen remains a global health burden, causing both seasonal epidemics and occasional pandemics. More potent and safe new vaccine technologies would contribute significantly to the battle against influenza and other(More)
NK cells are important innate immune effectors during influenza virus infection. However, the influenza virus seems able to use several tactics to counter NK cell recognition for immune evasion. In this review, we will summarize and discuss recent advances regarding the understanding of NK cell evasion mechanisms manipulated by the influenza virus to(More)