Hailing Cheng

Learn More
The phosphoinositide 3-kinase (PI3K) pathway is a key signal transduction system that links oncogenes and multiple receptor classes to many essential cellular functions, and is perhaps the most commonly activated signalling pathway in human cancer. This pathway therefore presents both an opportunity and a challenge for cancer therapy. Even as inhibitors(More)
PIK3CA gain-of-function mutations are a common oncogenic event in human malignancy, making phosphatidylinositol 3-kinase (PI3K) a target for cancer therapy. Despite the promise of targeted therapy, resistance often develops, leading to treatment failure. To elucidate mechanisms of resistance to PI3K-targeted therapy, we constructed a mouse model of breast(More)
Transcription and processing of pre-mRNA are coupled events. By using a combination of biochemical, molecular, and genetic methods, we have found that the phylogenetically conserved transcription factor Ssu72 is a component of the cleavage/polyadenylation factor (CPF) of Saccharomyces cerevisiae. Our results demonstrate that Ssu72 is required for 3' end(More)
Swd2, an essential WD repeat protein in Saccharomyces cerevisiae, is a component of two very different complexes: the cleavage and polyadenylation factor CPF and the Set1 methylase, which modifies lysine 4 of histone H3 (H3-K4). It was not known if Swd2 is important for the function of either of these entities. We show here that, in extract from cells(More)
Class Ia phosphatidylinositol 3 kinase (PI3K) is required for oncogenic receptor-mediated transformation; however, the individual roles of the two commonly expressed class Ia PI3K isoforms in oncogenic receptor signaling have not been elucidated in vivo. Here, we show that genetic ablation of p110α blocks tumor formation in both polyoma middle T antigen(More)
Human epidermal growth factor receptor 2 (HER2; ERBB2) amplification and phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha (PIK3CA) mutations often co-occur in breast cancer. Aberrant activation of the phosphatidylinositol 3-kinase (PI3K) pathway has been shown to correlate with a diminished response to HER2-directed therapies. We(More)
Resistance to anoikis, the subtype of apoptosis triggered by lack of adhesion, contributes to malignant transformation and the development of metastasis. Although several lines of evidence suggest that p53 plays a critical role in anoikis, the pathway(s) that connect cell detachment to p53 remain undefined. Here, through the use of a kinome-wide(More)
Signals from the tumor suppressors PTEN and LKB1 converge on mTOR to negatively regulate its function in cancer cells. Notably, both of these suppressors are attenuated in a significant fraction of human endometrial tumors. In this study, we generated a genetic mouse model of endometrial cancer driven by concomitant loss of these suppressors to gain(More)
PIK3CA gain-of-function mutations are a common oncogenic event in human malignancy1–4, making PI3K an attractive target for cancer therapy. Despite the great promise of targeted therapy, resistance often develops, resulting in treatment failure. To elucidate mechanisms of resistance to PI3K-targeted therapy, we constructed a mouse model of breast cancer(More)
Yeast Rna15 and its vertebrate orthologue CstF-64 play critical roles in mRNA 3 '-end processing and in transcription termination downstream of poly(A) sites. These proteins contain N-terminal domains that recognize the poly(A) site, but little is known about their highly conserved C-terminal regions. Here we show by NMR that the C-terminal domains of(More)