Haiguang Wen

Learn More
Despite the wide applications of functional magnetic resonance imaging (fMRI) to mapping brain activation and connectivity in cortical gray matter, it has rarely been utilized to study white-matter functions. In this study, we investigated the spatiotemporal characteristics of fMRI data within the white matter acquired from humans both in the resting state(More)
UNLABELLED Spontaneous activity observed with resting-state fMRI is used widely to uncover the brain's intrinsic functional networks in health and disease. Although many networks appear modular and specific, global and nonspecific fMRI fluctuations also exist and both pose a challenge and present an opportunity for characterizing and understanding brain(More)
Neurophysiological field-potential signals consist of both arrhythmic and rhythmic patterns indicative of the fractal and oscillatory dynamics arising from likely distinct mechanisms. Here, we present a new method, namely the irregular-resampling auto-spectral analysis (IRASA), to separate fractal and oscillatory components in the power spectrum of(More)
How does the brain represent visual information from the outside world? Here, we approach this question with a deep convolutional neural network that mimics neuronal circuitry and coding, and learns to solve computer vision tasks. Using this network as a computational model of the visual cortex, we develop novel encoding and decoding models to describe the(More)
Maximum Likelihood Estimation (MLE) is a widely used statistical estimation method. In this lecture, we will study its properties: efficiency, consistency and asymptotic normality. MLE is a method for estimating parameters of a statistical model. Given the distribution of a statistical model f(y ; θ) with unkown deterministic parameter θ, MLE is to estimate(More)
Large-scale functional networks have been extensively studied using resting state functional magnetic resonance imaging (fMRI). However, the pattern, organization, and function of fine-scale network activity remain largely unknown. Here, we characterized the spontaneously emerging visual cortical activity by applying independent component (IC) analysis to(More)
Complex, sustained, dynamic, and naturalistic visual stimulation can evoke distributed brain activities that are highly reproducible within and across individuals. However, the precise origins of such reproducible responses remain incompletely understood. Here, we employed concurrent functional magnetic resonance imaging (fMRI) and eye tracking to(More)
  • 1