Learn More
Electrografting of aryl films to electrode surfaces from diazonium ion solutions is a widely used method for preparation of modified electrodes. In the absence of deliberate measures to limit film growth, the usual film structure is a loosely packed multilayer. For some applications, monolayer films are advantageous; our interest is in preparing(More)
Water was investigated on a h-BN/Rh(111) nanomesh template using variable temperature scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. Below 52 K, two distinct phases self-assemble within the 3.2 nm unit cell of the nanomesh that consists of "holes" and "wires". In the 2 nm holes, an ordered phase of nano-ice crystals(More)
Ice nuclei have been studied on the hexagonal boron nitride nanomesh (h-BN/Rh(111)), a template with 2 nm wide molecule traps. Scanning tunneling microscopy shows confined clusters, where oligomers with three protrusions are particularly abundant. Together with local barrier height dI/dz maps, it is found that the dipoles of the water molecules arrange in a(More)
Using variable temperature scanning tunneling microscopy and dI/dz barrier height spectroscopy, the structure of water on h-BN/Rh(111) nanomesh has been investigated. Below its desorption temperature, two distinct phases of water self-assemble within the 3.2 nm unit cell of the nanomesh. In the 2 nm holes, an ordered phase of nano-ice crystals with about 40(More)
Functional nano-templates enable self-assembly of otherwise impossible arrangements of molecules. A particular class of such templates is that of sp2 hybridized single layers of hexagonal boron nitride or carbon (graphene) on metal supports. If the substrate and the single layer have a lattice mismatch, superstructures are formed. On substrates like rhodium(More)
  • 1