Learn More
Resting state functional brain networks have been widely studied in brain disease research. However, it is currently unclear whether abnormal resting state functional brain network metrics can be used with machine learning for the classification of brain diseases. Resting state functional brain networks were constructed for 28 healthy controls and 38 major(More)
Thompson sampling is one of the earliest random-ized algorithms for multi-armed bandits (MAB). In this paper, we extend the Thompson sampling to Budgeted MAB, where there is random cost for pulling an arm and the total cost is constrained by a budget. We start with the case of Bernoulli bandits , in which the random rewards (costs) of an arm are(More)
Generally, an alcoholic's brain shows explicit damage. However, in cognitive tasks, the correlation between the topological structural changes of the brain networks and the brain damage is still unclear. Scalp electrodes and synchronization likelihood (SL) were applied to the constructions of the EGG functional networks of 28 alcoholics and 28 healthy(More)
For Internet applications like sponsored search, cautions need to be taken when using machine learning to optimize their mechanisms (e.g., auction) since self-interested agents in these applications may change their behaviors (and thus the data distribution) in response to the mechanisms. To tackle this problem, a framework called game-theoretic machine(More)
Machine learning algorithms have been applied to predict agent behaviors in real-world dynamic systems, such as advertiser behaviors in sponsored search and worker behaviors in crowdsourcing. Behavior data in these systems are generated by live agents: once systems change due to the adoption of prediction models learnt from behavior data, agents will(More)
BACKGROUND Entropy is a nonlinear index that can reflect the degree of chaos within a system. It is often used to analyze epileptic electroencephalograms (EEG) to detect whether there is an epileptic attack. Much research into the state inspection of epileptic seizures has been conducted based on sample entropy (SampEn). However, the study of epileptic(More)
The development of multimedia technology and the popularisation of image capture devices have resulted in the rapid growth of digital images. The reliance on advanced technology to extract and automatically classify the emotional semantics implicit in images has become a critical problem. We proposed an emotional semantic classification method for images(More)
In this paper, we propose a novel level set geodesic model for image segmentation. In our model, we define a hybrid signed pressure force (SPF) function integrating local and global region-based information to segment inhomogeneous images. The local region-based SPF utilizes mean values on local circular regions centered in each pixel. By introducing the(More)