Haidong Lan

  • Citations Per Year
Learn More
In this paper we present XSW, a new parallel Smith-Waterman algorithm for searching protein sequence databases on the Xeon Phi coprocessor. In order to make full use of the compute power of the many-core Xeon Phi hardware, we have used a two-level parallelization scheme: the thread level coarse-grained and VPU level fine-grained parallelism to implement our(More)
Computing alignments between two or more sequences are common operations frequently performed in computational molecular biology. The continuing growth of biological sequence databases establishes the need for their efficient parallel implementation on modern accelerators. This paper presents new approaches to high performance biological sequence database(More)
Computer architectures continue to develop rapidly towards massively parallel and heterogeneous systems. Thus, easily extensible yet highly efficient parallelization approaches for a variety of platforms are urgently needed. In this paper, we present SWhybrid, a hybrid computing framework for large-scale biological sequence database search on heterogeneous(More)
The progress of next-generation sequencing has a major impact on medical and genomic research. This technology can now produce billions of short DNA fragments (reads) in a single run. One of the most demanding computational problems used by almost every sequencing pipeline is short-read alignment; i.e. determining where each fragment originated from in the(More)
The last decade has witnessed an explosion in the amount of available biological sequence data, due to the rapid progress of high-throughput sequencing projects. However, the biological data amount is becoming so great that traditional data analysis platforms and methods can no longer meet the need to rapidly perform data analysis tasks in life sciences. As(More)
  • 1