Learn More
—This paper presents a novel adaptive synthetic (ADASYN) sampling approach for learning from imbalanced data sets. The essential idea of ADASYN is to use a weighted distribution for different minority class examples according to their level of difficulty in learning, where more synthetic data is generated for minority class examples that are harder to learn(More)
We propose a new classifier combination method, the signal strength-based combining (SSC) approach, to combine the outputs of multiple classifiers to support the decision-making process in classification tasks. As ensemble learning methods have attracted growing attention from both academia and industry recently, it is critical to understand the fundamental(More)
—Sparse representation, which uses dictionary atoms to reconstruct input vectors, has been studied intensively in recent years. A proper dictionary is a key for the success of sparse representation. In this paper, an active dictionary learning (ADL) method is introduced, in which classification error and reconstruction error are considered as the active(More)
Difficulties of learning from nonstationary data stream are generally twofold. First, dynamically structured learning framework is required to catch up with the evolution of unstable class concepts, i.e., concept drifts. Second, imbalanced class distribution over data stream demands a mechanism to intensify the underrepresented class concepts for improved(More)
In recent years, learning from imbalanced data has attracted growing attention from both academia and industry due to the explosive growth of applications that use and produce imbalanced data. However, because of the complex characteristics of imbalanced data, many real-world solutions struggle to provide robust efficiency in learning-based applications. In(More)