Learn More
Herein, we report a novel Janus particle and supramolecular block copolymer consisting of two chemically distinct hyperbranched polymers, which is coined as Janus hyperbranched polymer. It is constructed by the noncovalent coupling between a hydrophobic hyperbranched poly(3-ethyl-3-oxetanemethanol) with an apex of an azobenzene (AZO) group and a hydrophilic(More)
Self-assembly of amphiphilic hyperbranched polymers (HBPs) is a newly emerging research area and has attracted increasing attention due to the great advantages in biomedical applications. This tutorial review focuses on the self-assembly of biocompatible or biodegradable amphiphilic HBPs and their cytomimetic applications, and specialities or advantages(More)
A polyhedral oligomeric silsesquioxane (POSS)-based supramolecular amphiphile is prepared from the host-guest inclusion complexation between a mono adamantane-functionalized POSS (AD-POSS) and a β-cyclodextrin oligomer (P(β-CD)). Assisted by the interface of H(2)O/toluene, the obtained supramolecular hybrids self-assemble into stable hollow nanospheres with(More)
Hyperbranched multiarm copolymers (HMCs) have been shown to hold great potential as precursors in self-assembly, and many impressive supramolecular structures have been prepared through the self-assembly of HMCs in solution. However, theoretical studies on the corresponding self-assembly mechanism have been greatly lagging behind. Herein, we report the(More)
This work reports the self-assembly of anion-exchangeable vesicles from an amphiphilic hyperbranched polymeric ionic liquid (HBPIL). By a simple one-step anion exchange with methyl orange, the obtained HBPILs could self-assemble into pH-indicative and colorful vesicles in water with color changes directly visible to the naked eye in response to solution pH.(More)
Herein, we have shown a large-scale cell-mimetic (cytomimetic) aggregation process by using cell-sized polymer vesicles as the building blocks and intervesicular host-guest molecular recognition interactions as the driving force. We first prepared the hyperbranched polymer vesicles named branched polymersomes (BPs) around 5-10 μm through the aqueous(More)
We demonstrate a high-leveled hierarchical self-assembly process into fractal structures. Two hyperbranched multiarm copolymers are first coassembled into binary isotropic vesicles in the primary self-assembly. Then, these primary vesicles are in situ endowed with anisotropic hydrophobic "binding sites" through a pH-induced lateral microphase separation,(More)
Vesicle-vesicle aggregation to mimic cell-cell aggregation has attracted much attention. Here, hyperbranched polymer vesicles (branched-polymersomes, BPs) with a cell-like size were selected as model membranes, and the vesicle aggregation process, triggered by click chemistry of the copper-catalysed azide-alkyne cycloaddition reaction, was systematically(More)
Herein, we report a new and facile method for fabricating TiO(2)@mesoporous carbon hybrid materials. Uniform polydopamine (PDA) layers were coated onto the surface of titanate nanotubes (TNTs) and TiO(2) nanorods (TNDs) through the spontaneous adhesion and self-polymerization of dopamine during the dipping process. Core-shell mesoporous carbon nanotubes(More)