Hai-rui Cui

Learn More
Phytic acid (PA, myo-inositol-1,2,3,4,5,6-hexakis-phosphate) and its salt form (phytate) are the principal storage forms of phosphorus in cereal grains. Since PA and phytates cannot be efficiently digested by monogastric animals, the abundance of PA in cereal and legume grains causes nutritional and environmental problems. The present study aimed at(More)
Phytic acid (PA) is poorly digested by humans and monogastric animals and negatively affects human/animal nutrition and the environment. Rice mutants with reduced PA content have been developed but are often associated with reduced seed weight and viability, lacking breeding value. In the present study, a new approach was explored to reduce seed PA while(More)
The rice low phytic acid (lpa) mutant Os-lpa-XS110-1(XS-lpa) has ~45 % reduction in seed phytic acid (PA) compared with the wild-type cultivar Xiushui 110. Previously, a single recessive gene mutation was shown to be responsible for the lpa phenotype and was mapped to a region of chromosome 3 near OsMIK (LOC_Os03g52760) and OsIPK1 (LOC_Os03g51610), two(More)
To produce agronomically competitive rice with nutritionally superior, environmentally safe phytic acid (PA) levels, hairpin RNA (hpRNA)- and artificial microRNA (amiRNA)-mediated gene silencing approaches were explored to reduce both myo-inositol kinase gene (OsMIK) expression and PA accumulation in rice seeds. hpRNA and amiRNA sequences targeted to OsMIK(More)
Mutation breeding is based on the induction of genetic variations; hence knowledge of the frequency and type of induced mutations is of paramount importance for the design and implementation of a mutation breeding program. Although γ ray irradiation has been widely used since the 1960s in the breeding of about 200 economically important plant species,(More)
  • 1