Hai-Tao Wang

Learn More
Sodium salicylate (SS) is a medicine for anti-inflammation and for chronic pain relief with a side effect of tinnitus. To understand the cellular mechanisms of tinnitus induced by SS in the central auditory system, we examined effects of SS on evoked and miniature inhibitory postsynaptic currents (eIPSCs and mIPSCs) recorded from layer II/III pyramidal(More)
Sodium salicylate (SS) can penetrate the blood-brain barrier to target neurons in the central auditory system. Understanding how SS alters functional behaviors of different types of central auditory neurons will provide insights into the neural mechanisms of SS-induced tinnitus. Here, we report the differential effects of SS on current-evoked firing of(More)
Available evidence suggests that sodium salicylate (SS) may produce tinnitus through altering the balance between inhibition and excitation in the central auditory system. Since serotonin (5-hydroxytryptamine, 5-HT) containing fibers preferentially innervate inhibitory GABA neurons, there exists a possibility that SS causes the imbalance between inhibition(More)
The purpose of this study is to investigate the change of phosphorylated p44/42 extracellular signal-regulated kinase (pERK1/2) and c-fos expression induced by single-prolonged stress (SPS) in medial prefrontal cortex (mPFC), and to determine whether extracellular signal-regulated kinase (ERK) pathway plays a role in SPS. Before exposure to SPS, Wistar rats(More)
Fatty acid biomarkers of the marine microalga Isochrysis zhangjiangensis in response to nitrogen depletion were identified by multivariate statistical analysis. Seven fatty acids (C16:0, C18:1n9, C18:4n3, C18:3n3, C18:5n3, C22:6n3, and C16:1n7) were selected and identified as potential biomarkers, among which C18:1n9 and C18:4n3 were enriched in the neutral(More)
The medial geniculate body (MGB) receives ascending inputs from the inferior colliculus and descending inputs from the auditory cortex. In the present study, we intended to determine whether activation of presynaptic GABA(B) receptors modulates GABAergic and glutamatergic inputs to the MGB with whole-cell patch-clamp recordings in brain slices of the rat.(More)
During eukaryotic DNA damage response (DDR), one of the earliest events is the phosphorylation of the C-terminal SQ motif of histone H2AX (H2A in yeasts). In human cells, phosphorylated H2AX (γH2AX) is recognized by MDC1, which serves as a binding platform for the accumulation of a myriad of DDR factors on chromatin regions surrounding DNA lesions. Despite(More)
Structure-specific nucleases play crucial roles in many DNA repair pathways. They must be precisely controlled to ensure optimal repair outcomes; however, mechanisms of their regulation are not fully understood. Here, we report a fission yeast protein, Pxd1, that binds to and regulates two structure-specific nucleases: Rad16XPF-Swi10ERCC1 and Dna2-Cdc24.(More)
The fatty acid profiles of lipids from microalgae are unique. Polyunsaturated fatty acids are generally enriched in polar lipids, whereas saturated and monounsaturated fatty acids constitute the majority of fatty acids in triacylglycerols (TAG). Each species has characteristic fatty acids, and their content is positively or negatively correlated with TAGs.(More)