Hai Ning Dai

Learn More
There is little axonal growth after central nervous system (CNS) injury in adult mammals. The administration of antibodies (IN-1) to neutralize the myelin-associated neurite growth inhibitory proteins leads to long-distance regrowth of a proportion of CNS axons after injury. Our aim was: to determine if spinal cord lesion in adult rats, followed by(More)
Although there is no spontaneous regeneration of mammalian spinal axons after injury, they can be enticed to grow if cAMP is elevated in the neuronal cell bodies before the spinal axons are cut. Prophylactic injection of cAMP, however, is useless as therapy for spinal injuries. We now show that the phosphodiesterase 4 (PDE4) inhibitor rolipram (which(More)
Little axonal regeneration occurs after spinal cord injury in adult mammals. Regrowth of mature CNS axons can be induced, however, by altering the intrinsic capacity of the neurons for growth or by providing a permissive environment at the injury site. Fetal spinal cord transplants and neurotrophins were used to influence axonal regeneration in the adult(More)
The ability to assess recovery of function after spinal cord injury is a very important part of spinal cord injury research. Recent progress has been made in a number of avenues of treatment designed to ameliorate the consequences of spinal cord injury and enhance recovery of function. This potential for intervention to modify the sequellae of spinal cord(More)
Basally located tight junctions between Sertoli cells in the postpubertal testis are the largest and most complex junctional complexes known. They form at puberty and are thought to be the major structural component of the "blood-testis" barrier. We have now examined the development of these structures in the immature mouse testis in conjunction with(More)
The capacity of CNS neurons for axonal regrowth after injury decreases as the age of the animal at time of injury increases. After spinal cord lesions at birth, there is extensive regenerative growth into and beyond a transplant of fetal spinal cord tissue placed at the injury site. After injury in the adult, however, although host corticospinal and(More)
Fetal spinal cord transplants placed into the site of spinal cord injury support axonal growth of host systems in both newborn and adult animals. The amount of axonal growth, however, is much more robust in the newborn animals. The current studies were designed to determine if the differences in the magnitude of the anatomical plasticity of host pathways in(More)
Earlier studies suggested that while after spinal cord lesions and transplants at birth, the transplants serve both as a bridge and as a relay to restore supraspinal input caudal to the injury (Bregman, 1994), after injury in the adult the spinal cord transplants serve as a relay, but not as a bridge. We show here, that after complete spinal cord(More)
Taken together, our studies indicate that (a) transplants mediate recovery of skilled forelimb movement as well as locomotor activity, (b) combinations of interventions may be required to restore reflex, sensory, and locomotor function to more normal levels after SCI, and (c) that remodeling of particular pathways may contribute to recovery of rather(More)
Fluorescent semiconductor nanocrystal quantum dots (QDs) are a class of multifunctional inorganic fluorophores that hold great promise for clinical applications and biomedical research. Because no methods currently exist for directed QD-labeling of mammalian cells in the nervous system in vivo, we developed novel in utero electroporation and(More)