Learn More
F-measures are popular performance metrics, particularly for tasks with imbalanced data sets. Algorithms for learning to maximize F-measures follow two approaches: the empirical utility maximization (EUM) approach learns a classifier having optimal performance on training data, while the decision-theoretic approach learns a probabilistic model and then(More)
Sum product networks (SPNs) are a new class of deep proba-bilistic models. They can contain multiple hidden layers while keeping their inference and training times tractable. An SPN consists of interleaving layers of sum nodes and product nodes. A sum node can be interpreted as a hidden variable, and a product node can be viewed as a feature capturing rich(More)
Dependencies among neighbouring labels in a sequence is an important source of information for sequence labeling problems. However, only dependencies between adjacent labels are commonly exploited in practice because of the high computational complexity of typical inference algorithms when longer distance dependencies are taken into account. In this paper,(More)
F-measures are popular performance metrics, particularly for tasks with imbalanced data sets. Algorithms for learning to maximize F-measures follow two approaches: the empirical utility maximization (EUM) approach learns a classifier having optimal performance on training data, while the decision-theoretic approach learns a probabilistic model and then(More)
This paper presents a maximum entropy-based named entity recognizer (NER). It differs from previous machine learning-based NERs in that it uses information from the whole document to classify each word, with just one classifier. Previous work that involves the gathering of information from the whole document often uses a secondary classifier, which corrects(More)
Bootstrapping is the process of improving the performance of a trained classifier by iteratively adding data that is labeled by the classifier itself to the training set, and retraining the classifier. It is often used in situations where labeled training data is scarce but unlabeled data is abundant. In this paper, we consider the problem of domain(More)
In this paper, we present a learning approach to the scenario template task of information extraction, where information filling one template could come from multiple sentences. When tested on the MUC-4 task, our learning approach achieves accuracy competitive to the best of the MUC-4 systems, which were all built with manually engineered rules. Our(More)