Learn More
Uncoupling protein-3 (UCP3) expression has been shown to increase dramatically in response to muscular contraction, but the physiological significance of UCP3 upregulation is still elusive. In this study, UCP3 mRNA and protein expression were investigated along with mitochondrial respiratory function, reactive oxygen species (ROS) generation, and(More)
Improving mitochondrial function has been proposed as a reasonable therapeutic strategy to reduce amyloid-β (Aβ) load and to modify the progression of Alzheimer's disease (AD). However, the relationship between mitochondrial adaptation and brain neuroprotection caused by physical exercise in AD is poorly understood. This study was undertaken to investigate(More)
The physiological significance of cardiac mitochondrial uncoupling protein 2 (UCP2)-mediated uncoupling respiration in exercise is unknown. In the current study, mitochondrial respiratory function, UCP2 mRNA level, UCP2-mediated respiration (UCR), and reactive oxygen species (ROS) generation, as well as manganese superoxide dismutase (MnSOD) activity were(More)
Increasing evidence has indicated that acute strenuous exercise can induce a range of adverse reactions including oxidative stress and tissue inflammation. However, little is currently known regarding the mechanisms that underlie the regulation of the inflammatory response in the myocardium during acute heavy exercise. This study evaluated the mitochondrial(More)
Exercise induced adaptations in muscle are highly specific and dependent upon the type of exercise, as well as its frequency, intensity, and duration. Mitochondria are highly dynamic organelles. Fusion and fission reactions lead to a continuous remodeling of the mitochondrial network, which range from reticulum of elongated and branched filaments to(More)
OBJECTIVE The risk and vulnerability of Parkinson disease (PD) are especially high in the elderly. However, the underlying causes are unknown. 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mice are useful tools to some extent for investigating PD-related problems due to their PD-like symptoms. The study is aimed to determine whether and what(More)
The physiological significance of skeletal muscle mitochondrial uncoupling protein 3 (UCP3) in hypoxia is elusive. In the current study, UCP3 mRNA and protein expressions were investigated along with mitochondrial respiratory function, reactive oxygen species (ROS) generation, as well as manganese superoxide dismutase (MnSOD) expression in rat skeletal(More)
This study was undertaken to investigate the effect of exercise training on mitochondrial DNA (mtDNA) oxidative damage and 8-oxoguanine DNA glycosylase-1 (OGG1) expression in skeletal muscle of rats under continuous exposure to hypoxia. Male Sprague-Dawley rats were randomly divided into 4 groups (n = 8): normoxia control group (NC), normoxia training group(More)
Regular endurance exercise promotes favorable structure and metabolism adaptations in contracting organ (skeletal muscle) and "far-sited" organ (heart, brain, liver, adipose tissue). Exercise induced skeletal muscle remodeling by activating a series of signaling and transcriptional circuitry (e. g., PPARδ, AMPK, SIRT1 and PGC-1α). In addition, contracting(More)
  • 1