Hahnbeom Park

Learn More
The CAPRI (Critical Assessment of Predicted Interactions) and CASP (Critical Assessment of protein Structure Prediction) experiments have demonstrated the power of community-wide tests of methodology in assessing the current state of the art and spurring progress in the very challenging areas of protein docking and structure prediction. We sought to bring(More)
Community-wide blind prediction experiments such as CAPRI and CASP provide an objective measure of the current state of predictive methodology. Here we describe a community-wide assessment of methods to predict the effects of mutations on protein-protein interactions. Twenty-two groups predicted the effects of comprehensive saturation mutagenesis for two(More)
Protein loops are often involved in important biological functions such as molecular recognition, signal transduction, or enzymatic action. The three dimensional structures of loops can provide essential information for understanding molecular mechanisms behind protein functions. In this article, we develop a novel method for protein loop modeling, where(More)
Three-dimensional protein structures provide invaluable information for understanding and regulating biological functions of proteins. The GalaxyWEB server predicts protein structure from sequence by template-based modeling and refines loop or terminus regions by ab initio modeling. This web server is based on the method tested in CASP9 (9th Critical(More)
The FALC-Loop web server provides an online interface for protein loop modeling by employing an ab initio loop modeling method called FALC (fragment assembly and analytical loop closure). The server may be used to construct loop regions in homology modeling, to refine unreliable loop regions in experimental structures or to model segments of designed(More)
The quality of model structures generated by contemporary protein structure prediction methods strongly depends on the degree of similarity between the target and available template structures. Therefore, the importance of improving template-based model structures beyond the accuracy available from template information has been emphasized in the structure(More)
The prediction of the structures of proteins without detectable sequence similarity to any protein of known structure remains an outstanding scientific challenge. Here we report significant progress in this area. We first describe de novo blind structure predictions of unprecendented accuracy we made for two proteins in large families in the recent CASP11(More)
Protein structures can be reliably predicted by template-based modeling (TBM) when experimental structures of homologous proteins are available. However, it is challenging to obtain structures more accurate than the single best templates by either combining information from multiple templates or by modeling regions that vary among templates or are not(More)
The rapid increase in the number of experimentally determined protein structures in recent years enables us to obtain more reliable protein tertiary structure models than ever by template-based modeling. However, refinement of template-based models beyond the limit available from the best templates is still needed for understanding protein function in(More)
We report the first assessment of blind predictions of water positions at protein-protein interfaces, performed as part of the critical assessment of predicted interactions (CAPRI) community-wide experiment. Groups submitting docking predictions for the complex of the DNase domain of colicin E2 and Im2 immunity protein (CAPRI Target 47), were invited to(More)