Learn More
PlasmoDB (http://PlasmoDB.org) is the official database of the Plasmodium falciparum genome sequencing consortium. This resource incorporates the recently completed P. falciparum genome sequence and annotation, as well as draft sequence and annotation emerging from other Plasmodium sequencing projects. PlasmoDB currently houses information from five(More)
The host cell membrane of Plasmodium falciparum infected cells becomes permeabilized at the trophozoite stage. A variety of otherwise impermeant substances such as carbohydrates, polyols, amino acids and anions easily gain access to the cytosol of infected cells. Using the isotonic-hemolysis method or uptake of labeled substances, we characterized the new(More)
Experimenta naturae, like the glucose-6-phosphate dehydrogenase deficiency, indicate that malaria parasites are highly susceptible to alterations in the redox equilibrium. This offers a great potential for the development of urgently required novel chemotherapeutic strategies. However, the relationship between the redox status of malarial parasites and that(More)
Unstable hemoglobins and oxidative conditions tend to produce hemichromes which demonstrably release their heme to the erythrocyte membrane, with consequent lipid peroxidation and cell lysis. High levels of non-heme iron are also found in such circumstances, but the origin of this iron is uncertain. In the present work, we show that reduced glutathione(More)
Oxidative radicals are demonstrably produced in malaria-infected erythrocytes. In order to verify the biochemical origin of these radicals, erythrocyte lysate was brought to acid pH to mimic the environment of the parasite food vacuole into which host cell cytosol is transferred during parasite feeding. Oxyhemoglobin, but not deoxyhemoglobin, is rapidly(More)
We propose here a new and detailed model for the antimalarial action of chloroquine (CQ), based on the its ability to inhibit degradation of heme by glutathione. Heme, which is toxic to the malaria parasite, is formed when the intraerythrocytic malaria parasite ingests and digests inside its food vacuole its host cell cytosol, which consists mainly of(More)
Malaria-infected red blood cells are under a substantial oxidative stress. Glutathione metabolism may play an important role in antioxidant defense in these cells, as it does in other eukaryotes. In this work, we have determined the levels of reduced and oxidized glutathione (GSH and GSSG, respectively) and their distributions in the parasite, and in the(More)
Genomic, transcriptomic and proteomic data can be turned into biologically meaningful information if they are synthesized into processes. Such amalgamation has been done for the most virulent malaria parasite Plasmodium falciparum in the Metabolic Pathways database. The dialectics of construction of metabolic pathways and other biological processes using(More)
Ultrastructural investigations of P. falciparum cultivated in vitro in human erythrocytes revealed new features of the feeding mechanism of the parasite. Mature trophozoites and schizonts take up a portion of the host cytosol by endocytosis which is restricted to cytostomes and which involves the invagination of both parasitophorous and parasite membranes.(More)