Learn More
With an aim to elucidate novel metabolic and transcriptional interactions associated with methionine (Met) metabolism in seeds, we have produced transgenic Arabidopsis (Arabidopsis thaliana) seeds expressing a feedback-insensitive form of CYSTATHIONINE-γ-SYNTHASE, a key enzyme of Met synthesis. Metabolic profiling of these seeds revealed that, in addition(More)
Single-stranded deoxyribonucleic acid (ssDNA) thymidylic acid icosanucleotides (dT20) were synthesized on the surfaces of derivatized quartz optical fibers to create an optical DNA biosensor. The synthesis made use of an automated solid-phase synthesizer and phosphoramidite synthons. The covalently immobilized oligomers were found to hybridize with(More)
Higher methionine levels in transgenic Arabidopsis seeds trigger the accumulation of stress-related transcripts and primary metabolites. These responses depend on the levels of methionine within seeds. Methionine, a sulfur-containing amino acid, is a key metabolite in plant cells. To reveal the regulatory role of the Arabidopsis thaliana CYSTATHIONINE(More)
The metabolic profiles and composition of storage reserves of agricultural crop seeds are strongly regulated by heritable and environmental factors. Yet, very little is known about the genetic and environmental determinants of adaptive metabolic variation amongst wild type as well as transgenic seed populations derived from the same genetic background,(More)
Previous in vitro studies demonstrate that exogenous application of the sulfur-containing amino acid methionine into cultured soybean cotyledons and seedlings reduces the level of methionine-poor storage proteins and elevates those that are methionine-rich. However, the effect of higher endogenous methionine in seeds on the composition of storage products(More)
The nuclear pore complex is a large protein channel present universally in eukaryotic cells. It generates an essential macromolecular separation between the nucleus and cytoplasm. The transport mechanism relies on recognition of molecular cargos by receptor proteins, and on specific interaction between the receptors and the pores. We present a chemical(More)
Methionine is a nutritionally essential sulfur-containing amino acid found at low levels in plant tissues. Yet, the factors that regulate its synthesis and accumulation in seeds are not fully known. Recent genetic studies demonstrate that Arabidopsis seeds are able to synthesize methionine de novo through the aspartate family pathway similarly to vegetative(More)
Genome doubling may have multi-level effects on the morphology, viability and physiology of polyploids compared to diploids. We studied the changes associated with autopolyploidization in two systems of somatic newly induced polyploids, diploid-autotetraploid and triploid-autohexaploid, belonging to the genus Hylocereus (Cactaceae). Stomata, fruits, seeds,(More)
Enzymes operating in the S -methylmethionine cycle make a differential contribution to methionine synthesis in seeds. In addition, mutual effects exist between the S -methylmethionine cycle and the aspartate family pathway in seeds. Methionine, a sulfur-containing amino acid, is a key metabolite in plant cells. The previous lines of evidence proposed that(More)
Experimental evidence derived from a comprehensive study of a self-assembled organosilane multilayer film system undergoing a process of postassembly chemical modification that affects interlayer-located polar groups of the constituent molecules while preserving its overall molecular architecture allows a quantitative evaluation of both the degree of(More)