Hafiz A. Mustafa

Learn More
Soaring capacity and coverage demands dictate that future cellular networks need to soon migrate towards ultradense networks. However, network densification comes with a host of challenges that include compromised energy efficiency, complex interference management, cumbersome mobility management, burdensome signaling overheads and higher backhaul costs.(More)
Device-to-device (D2D) communication is being considered an important traffic offloading mechanism for future cellular networks. Coupled with pro-active device caching, it offers huge potential for capacity and coverage enhancements. In order to ensure maximum capacity enhancement, number of nodes for direct communication needs to be identified. In this(More)
Device-to-device (D2D) communication has huge potential for capacity and coverage enhancements for next generation cellular networks. The number of potential nodes for D2D communication is an important parameter that directly impacts the system capacity. In this paper, we derive analytic expression for average coverage probability of cellular user and(More)
Next generation cellular networks require huge capacity, ubiquitous coverage and maximum energy efficiency. In order to meet these targets, Device-to-device (D2D) communication is being considered for future heterogeneous networks (HetNets). In this paper, we consider a three tier hierarchical HetNet by exploiting D2D communication in traditional HetNet.(More)
The homogeneous Poisson point process (PPP) is widely used to model spatial distribution of base stations and mobile terminals. The same process can be used to model underlay device-to-device (D2D) network, however, neglecting homophilic relation for D2D pairing presents underestimated system insights. In this paper, we model both spatial and social(More)
The homogeneous poisson point process (PPP) is widely used to model temporal, spatial or both topologies of base stations (BSs) and mobile terminals (MTs). However, negative spatial correlation in BSs, due to strategical deployments, and positive spatial correlations in MTs, due to homophilic relations, cannot be captured by homogeneous spatial PPP (SPPP).(More)
  • 1