Learn More
Exposure to ethanol during early development triggers severe neuronal death by activating multiple stress pathways and causes neurological disorders, such as fetal alcohol effects or fetal alcohol syndrome. This study investigated the effect of ethanol on intracellular events that predispose developing neurons for apoptosis via calcium-mediated signaling.(More)
Exposure to alcohol during the early stages of brain development can lead to neurological disorders in the CNS. Apoptotic neurodegeneration due to ethanol exposure is a main feature of alcoholism. Exposure of developing animals to alcohol (during the growth spurt period in particular) elicits apoptotic neuronal death and causes fetal alcohol effects (FAE)(More)
The pathological hallmarks of Alzheimer's disease (AD) include amyloid beta (Aβ) accumulation, neurofibrillary tangle formation, synaptic dysfunction and neuronal loss. In this study, we investigated the neuroprotection of novel osmotin, a plant protein extracted from Nicotiana tabacum that has been considered to be a homolog of mammalian adiponectin. Here,(More)
Here, we investigated the possible involvement of gamma-aminobutyric acid B1 receptor (GABAB1R) in mediating the protective effects of black soybean anthocyanins against ethanol-induced apoptosis in prenatal hippocampal neurons because GABARs are known to play an important role in the development of central nervous system. Treatments were performed on(More)
Epilepsy is a common neurological disorder that leads to neuronal excitability and provoke various forms of cellular reorganization in the brain. In this study, we investigate the anti-convulsant and neuroprotective effects of thymoquinone (TQ) and vitamin C against pentylenetetrazole (PTZ)-induced generalized seizures. Epileptic seizures were induced in(More)
Anthocyanins in a variety of plant species have been identified and are known for its hypolipidemic and anti-obesity effects. The effect of anthocyanins extracted from black soybean on body weight and daily food intake in adult rats raised on normal diet were studied. Male Sprague-Dawley rats were daily intra-gastric administered water or anthocyanins 6(More)
During development, anesthetics activate neuroapoptosis and produce damage in the central nervous system that leads to several types of neurological disorders. A single dose of ketamine (40 mg/kg) during synaptogenesis in a 7-day-old rat brain activated the apoptotic cascade and caused extensive neuronal cell death in the forebrain. In this study, we(More)