Hadi Eghlidi

Learn More
We developed a method to use any GFP-tagged construct in single-molecule super-resolution microscopy. By targeting GFP with small, high-affinity antibodies coupled to organic dyes, we achieved nanometer spatial resolution and minimal linkage error when analyzing microtubules, living neurons and yeast cells. We show that in combination with libraries(More)
Single gold nanoparticles can act as nanoantennas for enhancing the fluorescence of emitters in their near fields. Here we present experimental and theoretical studies of scanning antenna-based fluorescence microscopy as a function of the diameter of the gold nanoparticle. We examine the interplay between fluorescence enhancement and spatial resolution and(More)
Nanotechnology, with its broad impact on societally relevant applications, relies heavily on the availability of accessible nanofabrication methods. Even though a host of such techniques exists, the flexible, inexpensive, on-demand and scalable fabrication of functional nanostructures remains largely elusive. Here we present a method involving nanoscale(More)
We report on two orders of magnitude reduction in the fluorescence lifetime when a single molecule placed in a thin film is surrounded by two gold nanospheres across the film interface. By attaching one of the gold particles to the end of a glass fiber tip, we could control the modification of the molecular fluorescence at will. We find a good agreement(More)
Plasmonic nanostructures can significantly advance broadband visible-light absorption, with absorber thicknesses in the sub-wavelength regime, much thinner than conventional broadband coatings. Such absorbers have inherently very small heat capacity, hence a very rapid response time, and high light power-to-temperature sensitivity. Additionally, their(More)
Plasmonic absorbers have recently become important for a broad spectrum of sunlight-harvesting applications exploiting either heat generation, such as in thermal photovoltaics and solar thermoelectrics, or hot-electron generation, such as in photochemical and solid state devices. So far, despite impressive progress, combining the needed high performance(More)
Nanostructured metal-insulator-metal (MIM) metasurfaces supporting gap-plasmons (GPs) show great promise due to their ability to manipulate or concentrate light at the nanoscale, which is of importance to a broad palette of technologies. The interaction between individual, proximal GP nanoresonators, reaching the point of first electrical connection, can(More)
The fabrication of functional metamaterials with extreme feature resolution finds a host of applications such as the broad area of surface/light interaction. Nonplanar features of such structures can significantly enhance their performance and tunability, but their facile generation remains a challenge. Here, we show that carefully designed out-of-plane(More)
Separating petroleum hydrocarbons from water is an important problem to address in order to mitigate the disastrous effects of hydrocarbons on aquatic ecosystems. A rational approach to address the problem of marine oil-water separation is to disperse the oil with the aid of surfactants in order to minimize the formation of large slicks at the water surface(More)