Learn More
Francisella tularensis is a highly infectious, facultative intracellular bacterium which causes epidemics of tularemia in both humans and mammals at regular intervals. The natural reservoir of the bacterium is largely unknown, although it has been speculated that protozoa may harbor it. To test this hypothesis, Acanthamoeba castellanii was cocultured with a(More)
Vibrio cholerae species are extracellular, waterborne, gram-negative bacteria that are overwhelmed by predators in aquatic environments. The unencapsulated serogroup V. cholerae O1 and encapsulated V. cholerae O139 cause epidemic and pandemic outbreaks of cholera. It has recently been shown that the aquatic and free-living amoeba Acanthamoeba castellanii is(More)
Vibrio cholerae is a highly infectious bacterium responsible for large outbreaks of cholera among humans at regular intervals. A seasonal distribution of epidemics is known but the role of naturally occurring habitats are virtually unknown. Plankton has been suggested to play a role, because bacteria can attach to such organisms forming a biofilm.(More)
AIMS To investigate the hypothesis that amoeba may comprise a significant environmental reservoir for Aeromonas, Acanthamoeba-Aeromonas interaction experiments were performed. METHODS AND RESULTS Acanthamoeba were grown in monoculture and co-cultures with three different species of Aeromonas. Survival, invasion and viable but nonculturable state(More)
Pseudomonas aeruginosa is a free-living and common environmental bacterium. It is an opportunistic and nosocomial pathogen causing serious human health problems. To overcome its predators, such as macrophages and environmental phagocytes, it utilises different survival strategies, such as the formation of microcolonies and the production of toxins mediated(More)
The interaction between Shigella dysenteriae or Shigella sonnei and Acanthamoeba castellanii was studied by viable counts, gentamicin assay and electron microscopy. The result showed that Shigella dysenteriae or Shigella sonnei grew and survived in the presence of amoebae for more than 3 weeks. Gentamicin assay showed that the Shigella were viable inside(More)
Vibrio cholerae causes the diarrheal disease cholera and utilizes different survival strategies in aquatic environments. V. cholerae can survive as free-living or in association with zooplankton and can build biofilm and rugose colonies. The bacterium expresses cholera toxin (CT) and toxin-coregulated pilus (TCP) as the main virulence factors. These factors(More)
Acanthamoeba is a genus of free-living amoebae found to be able to host many bacterial species living in the environment. Acanthamoebae and Vibrio cholerae are found in the aquatic environments of cholera endemic areas. Previously it has been shown that V. cholerae O1 and O139 can survive and grow in Acanthamoeba castellanii. The aim of this study was to(More)
Acanthamoebae are free-living amoebae distributed worldwide. They are among the most prevalent protozoa found in the environment, and have been isolated from a wide variety of public water supplies, swimming pools, bottled water, ventilation ducts, soil, air, surgical instruments, contact lenses, dental treatment units and hospitals. Acanthamoebae feed on(More)
Vibrio mimicus is a Gram-negative bacterium, which causes gastroenteritis and is closely related to Vibrio cholerae. The environmental reservoir of this bacterium is far from defined. Acanthamoeba as well as Vibrio species are found in diverse aquatic environments. The present study was aimed to investigate the ability of A. castellanii to host V. mimicus,(More)