Hadar Ben-Yoav

  • Citations Per Year
Learn More
A lab-on-chip consisting of a unique integration of whole-cell sensors, a MOEMS (Micro-Opto-Electro-Mechanical-System) modulator, and solid-state photo-detectors was implemented for the first time. Whole-cell sensors were genetically engineered to express a bioluminescent reporter (lux) as a function of the lac promoter. The MOEMS modulator was designed to(More)
Bioluminescence-based whole cell biosensors are devices that can be very useful for environmental monitoring applications. The advantages of these devices are that they can be produced as a single-chip, low-power, rugged, inexpensive component, and can be deployed in a variety of non-laboratory settings. However, such biosensors encounter inherent problems(More)
The use of on-chip cellular activity monitoring for biological/chemical sensing is promising for environmental, medical and pharmaceutical applications. The miniaturization revolution in microelectronics is harnessed to provide on-chip detection of cellular activity, opening new horizons for miniature, fast, low cost and portable screening and monitoring(More)
Whole-cell bio-chips for functional sensing integrate living cells on miniaturized platforms made by micro-system-technologies (MST). The cells are integrated, deposited or immersed in a media which is in contact with the chip. The cells behavior is monitored via electrical, electrochemical or optical methods. In this paper we describe such whole-cell(More)
Recent advances in the convergence of the biological, chemical, physical, and engineering sciences have opened new avenues of research into the interfacing of diverse biological moieties with inanimate platforms. A main aspect of this field, the integration of live cells with micro-machined platforms for high throughput and bio-sensing applications, is the(More)
In this paper we propose a new approach of signal conditioning circuits. The circuit is able to handle both electrochemical and bioluminescent sensors, mainly electrochemical sensors. The integrated circuit will convert electrical signal into impulses, making the frequency the carrier of the information. In this way we avoid amplifying stages, reducing(More)
  • 1