Learn More
The precise identification of the HIV-1 envelope glycoprotein (Env) responsible for productive clinical infection could be instrumental in elucidating the molecular basis of HIV-1 transmission and in designing effective vaccines. Here, we developed a mathematical model of random viral evolution and, together with phylogenetic tree construction, used it to(More)
The cellular immune response to primary influenza virus infection is complex, involving multiple cell types and anatomical compartments, and is difficult to measure directly. Here we develop a two-compartment model that quantifies the interplay between viral replication and adaptive immunity. The fidelity of the model is demonstrated by accurately(More)
We introduce a model of protein evolution to explain limitations in the immune system response to vaccination and disease. The phenomenon of original antigenic sin, wherein vaccination creates memory sequences that can increase susceptibility to future exposures to the same disease, is explained as stemming from localization of the immune system response in(More)
The fluorescent dye carboxyfluorescein diacetate succinimidyl ester (CFSE) classifies proliferating cell populations into groups according to the number of divisions each cell has undergone (i.e., its division class). The pulse labeling of cells with radioactive thymidine provides a means to determine the distribution of times of entry into the first cell(More)
The fluorescent dye carboxyfluorescin diacetate succinimidyl ester (CFSE) classifies proliferating cell populations into groups according to the number of divisions each cell has undergone (i.e., its division class). The pulse labeling of cells with radioactive thymidine provides a means to determine the distribution of times of entry into the first cell(More)
Neurons in the visual cortex respond best to rod-like stimuli of given orientation. While the preferred orientation varies continuously across most of the cortex, there are prominent pinwheel centers around which all orientations are present. Oriented segments abound in natural images and tend to be collinear; neurons are also more likely to be connected if(More)
HIV-1 sequences in intravenous drug user (IDU) networks are highly homogenous even after several years, while this is not observed in most sexual epidemics. To address this disparity, we examined the human immunodeficiency virus type 1 (HIV-1) evolutionary rate on the population level for IDU and heterosexual transmissions. All available HIV-1 env V3(More)
MOTIVATION Insertional RNA editing renders gene prediction very difficult compared to organisms without such RNA editing. A case in point is the mitochondrial genome of Physarum polycephalum in which only about one-third of the number of genes that are to be expected given its length are annotated. Thus, gene prediction methods that explicitly take into(More)
Quantifying the dynamics of intrahost HIV-1 sequence evolution is one means of uncovering information about the interaction between HIV-1 and the host immune system. In the chronic phase of infection, common dynamics of sequence divergence and diversity have been reported. We developed an HIV-1 sequence evolution model that simulated the effects of mutation(More)
We describe a mathematical model and Monte Carlo (MC) simulation of viral evolution during acute infection. We consider both synchronous and asynchronous processes of viral infection of new target cells. The model enables an assessment of the expected sequence diversity in new HIV-1 infections originating from a single transmitted viral strain, estimation(More)