• Publications
  • Influence
RANDOM-MATRIX THEORIES IN QUANTUM PHYSICS : COMMON CONCEPTS
We review the development of random-matrix theory (RMT) during the last fifteen years. We emphasize both the theoretical aspects, and the application of the theory to a number of fields. TheseExpand
  • 1,277
  • 32
  • PDF
Grassmann integration in stochastic quantum physics: The case of compound-nucleus scattering
Using astochasticmodel for N compound—nucleusresonances coupledto thechannels,we calculatein the limit N—* theensembleaverageof theS-matrix (the “one-point function”),andof theproductof anExpand
  • 459
  • 4
  • PDF
Random matrices and chaos in nuclear physics: Nuclear reactions
The application of random-matrix theory (RMT) to compound-nucleus (CN) reactions is reviewed. An introduction into the basic concepts of nuclear scattering theory is followed by a survey ofExpand
  • 121
  • 4
  • PDF
Perturbation theory for the effective interaction in nuclei
Abstract Starting from a decomposition of the Hamiltonian H(x) of the nuclear many-body problem in the form H(x) = H0 + xV, where H0 is a shell-model Hamiltonian, V the residual interaction, and x aExpand
  • 220
  • 2
Colloquium: Random matrices and chaos in nuclear spectra
Chaos occurs in quantum systems if the statistical properties of the eigenvalue spectrum coincide with predictions of random-matrix theory. Chaos is a typical feature of atomic nuclei and otherExpand
  • 71
  • 2
  • PDF
Introduction to the theory of heavy-ion collisions
Some basic tools of theoretical heavy-ion physics are presented. Topics covered include: classical theory of heavy ion collisions; gross properties of heavy ion reactions, compound nucleus formation;Expand
  • 87
  • 2
The effective interaction in nuclei and its perturbation expansion: An algebraic approach
Abstract We consider a finite-dimensional model for the Hilbert space of the A -nucleon problem. In the frame of this model we explicitly construct the energy-independent effective interaction WExpand
  • 275
  • 1
Stochastic versus semiclassical approach to quantum chaotic scattering
Abstract We explore the universal features of quantum scattering systems for which the classical scattering is chaotic. We do so by comparing the semiclassical approach and the stochastic approach,Expand
  • 124
  • 1
Induced violation of time-reversal invariance in the regime of weakly overlapping resonances.
We measure the complex scattering amplitudes of a flat microwave cavity (a "chaotic billiard"). Time-reversal (T) invariance is partially broken by a magnetized ferrite placed within the cavity. WeExpand
  • 69
  • 1
  • PDF