Share This Author
Knapsack problems
- H. Kellerer, Ulrich Pferschy, David Pisinger
- Computer Science
- 2004
Duality theorems for marginal problems
- H. Kellerer
- Mathematics
- 1 November 1984
SummaryGiven topological spaces X1, ..., Xn with product space X, probability measures μi on Xi together with a real function h on X define a marginal problem as well as a dual problem. Using an…
Introduction to NP-Completeness of Knapsack Problems
- H. Kellerer, Ulrich Pferschy, David Pisinger
- Computer Science
- 2004
The reader may have noticed that for all the considered variants of the knapsack problem, no polynomial time algorithm have been presented which solves the problem to optimality. Indeed all the…
Approximation algorithms for knapsack problems with cardinality constraints
- A. Caprara, H. Kellerer, Ulrich Pferschy, David Pisinger
- Computer Science, MathematicsEur. J. Oper. Res.
- 1 June 2000
Parallel machine scheduling with job assignment restrictions
- C. Glass, H. Kellerer
- Business
- 1 April 2007
TLDR
Semi on-line algorithms for the partition problem
- H. Kellerer, V. Kotov, M. Speranza, Z. Tuza
- Business, Computer ScienceOper. Res. Lett.
- 1997
Optimization of cardinality constrained portfolios with a hybrid local search algorithm
- D. Maringer, H. Kellerer
- Computer ScienceOR Spectr.
- 1 October 2003
TLDR
A New Fully Polynomial Time Approximation Scheme for the Knapsack Problem
- H. Kellerer, Ulrich Pferschy
- Computer ScienceJ. Comb. Optim.
- 1 July 1999
TLDR
An efficient fully polynomial approximation scheme for the Subset-Sum Problem
- H. Kellerer, R. Mansini, Ulrich Pferschy, M. Speranza
- Computer Science, MathematicsJ. Comput. Syst. Sci.
- 1 March 2003
A PTAS for the Multiple Subset Sum Problem with different knapsack capacities
- A. Caprara, H. Kellerer, Ulrich Pferschy
- MathematicsInf. Process. Lett.
- 29 February 2000
...
...