Author pages are created from data sourced from our academic publisher partnerships and public sources.

Publications Influence

Share This Author

Exterior Differential Systems

- R. Bryant, S. Chern, R. Gardner, H. Goldschmidt, P. Griffiths
- Mathematics
- 19 December 1990

Basic theorems Cartan-Khler theory linear differential systems the characteristic variety prolongation theory applications of commutative algebra and algebraic geometry to the study of exterior… Expand

Existence theorems for analytic linear partial differential equations

- H. Goldschmidt
- Mathematics
- 1 September 1967

The theory of analytic systems of partial differential equations was first systematically investigated by Riquier and Elie Cartan around 1900. The existence of local solutions involves an algebraic… Expand

Integrability criteria for systems of nonlinear partial differential equations

- H. Goldschmidt
- Mathematics
- 1967

The Hamilton-Cartan formalism in the calculus of variations

- H. Goldschmidt, S. Sternberg
- Mathematics
- 1973

In this paper, we give an exposition of the geometry of the calculus of variations in several variables. The main emphasis is on the Hamiltonian formalism via the use of a linear differential form… Expand

ZERO-ENERGY FIELDS ON COMPLEX PROJECTIVE SPACE

- M. Eastwood, H. Goldschmidt
- Mathematics
- 8 August 2011

We consider complex projective space with its Fubini–Study metric and the X-ray transform defined by integration over its geodesics. We identify the kernel of this transform acting on symmetric… Expand

Regularity Theorems in Riemannian Geometry. II. Harmonic Curvature and the Weyl Tensor

- D. DeTurck, H. Goldschmidt
- Mathematics
- 1989

We study the regularity of metrics satisfying geometric conditions imposed on the Ricci or Weyl curvatures. In particular, we show that a metric with harmonic curvature is realanalytic in harmonic… Expand

Linear Differential Systems

- R. Bryant, S. Chern, R. Gardner, H. Goldschmidt, P. Griffiths
- Computer Science
- 1991

TLDR

Prolongations of linear partial differential equations. II. Inhomogeneous equations

- H. Goldschmidt
- Mathematics
- 1968

© Gauthier-Villars (Éditions scientifiques et médicales Elsevier), 1968, tous droits réservés. L’accès aux archives de la revue « Annales scientifiques de l’É.N.S. » (http://www.… Expand

Prolongations of linear partial differential equations. I. A conjecture of Élie Cartan

- H. Goldschmidt
- Mathematics
- 1968

© Gauthier-Villars (Éditions scientifiques et médicales Elsevier), 1968, tous droits réservés. L’accès aux archives de la revue « Annales scientifiques de l’É.N.S. » (http://www.… Expand

...

1

2

3

4

5

...