Learn More
The hippocampus, a major site of neurogenesis in the adult brain, plays an important role in memory. Based on earlier observations where exposure to high-intensity noise not only caused hearing loss but also impaired memory function, it is conceivably that noise exposure may suppress hippocampal neurogenesis. To evaluate this possibility, nine rats were(More)
Animal models with partial lesions of the dopaminergic nigrostriatal pathway may be useful for developing neuroprotective and neurotrophic therapies for Parkinson's disease. To develop such a model, different doses of 6-hydroxydopamine (0.0, 0.625, 1.25, 2.5 and 5.0 micrograms/microliters in 3.5 microliters of saline) were unilaterally injected into the(More)
Aberrant, lesion-induced neuroplastic changes in the auditory pathway are believed to give rise to the phantom sound of tinnitus. Noise-induced cochlear damage can induce extensive fiber growth and synaptogenesis in the cochlear nucleus, but it is currently unclear if these changes are linked to tinnitus. To address this issue, we unilaterally exposed nine(More)
Copper/zinc superoxide dismutase (Cu/Zn SOD) is a first-line defense against free radical damage in the cochlea and other tissues. To determine whether deficiencies in Cu/Zn SOD increase age-related hearing loss and cochlear pathology, we collected auditory brainstem responses (ABRs) and determined cochlear hair cell loss in 13-month-old 129/CD-1 mice with(More)
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are involved in sensory cell and neural death in the peripheral nervous system, including damage induced by noise trauma. Antioxidant administration prior to or concomitant with noise exposure can prevent auditory deficits, but the efficacy of a delayed treatment is not known. We have(More)
The present study demonstrates that the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) causes significantly greater reductions in striatal dopamine levels in C57/bl mice than in CD-1 mice, thus confirming a greater sensitivity of the C57/bl mice to MPTP. To determine the possible reasons for this difference in MPTP sensitivity between these(More)
Inner ear damage leads to nerve fiber growth and synaptogenesis in the ventral cochlear nucleus (VCN). In this study, we documented the relationship between hair cell loss patterns and synaptic plasticity in the chinchilla VCN using immunolabeling of the growth associated protein-43 (GAP-43), a protein associated with axon outgrowth and modification of(More)
Exposure to intense noise induces apoptosis in hair cells in the cochlea. To identify the molecular changes associated with noise-induced apoptosis, we used quantitative real-time PCR to evaluate the changes in 84 apoptosis-related genes in cochlear samples from the sensory epithelium and lateral wall. Sprague-Dawley rats exposed to a continuous noise at(More)
Parkinson's disease (PD) is characterized mainly by a loss of nigrostriatal dopamine neurons. Thus far, the actual physiopathology of PD remains uncertain, although recent studies have found decreased activity of complex I, one of the enzymatic units of the mitochondrial respiratory chain, in various tissues of PD patients. Because most, if not all, of PD(More)
Adenosine receptor antagonists, DMPX, PACPX and theophylline, produce contralateral rotations in unilateral 6-hydroxydopamine-lesioned rats. DMPX and theophylline markedly increase rotations produced by bromocriptine (a dopamine D2 receptor agonist) and/or SKF38393A (a dopamine D1 receptor agonist). All of these effects are inhibited by CGS21680C (an(More)
  • 1