Learn More
The composition of the P840-reaction center complex (RC), energy and electron transfer within the RC, as well as its topographical organization and interaction with other components in the membrane of green sulfur bacteria are presented, and compared to the FeS-type reaction centers of Photosystem I and of Heliobacteria. The core of the RC is homodimeric,(More)
Translocase mediates preprotein translocation across the Escherichia coli inner membrane. It consists of the SecYEG integral membrane protein complex and the peripheral ATPase SecA. Here we show by functional assays, negative-stain electron microscopy and mass measurements with the scanning transmission microscope that SecA recruits SecYEG complexes to form(More)
The three-dimensional (3D) structure of the reaction center (RC) complex isolated from the green sulfur bacterium Chlorobium tepidum was determined from projections of negatively stained preparations by angular reconstitution. The purified complex contained the PscA, PscC, PscB, PscD subunits and the Fenna-Matthews-Olson (FMO) protein. Its mass was found to(More)
Electron crystallography and atomic force microscopy allow the study of two-dimensional membrane protein crystals. While electron crystallography provides atomic scale three-dimensional density maps, atomic force microscopy gives insight into the surface structure and dynamics at sub-nanometer resolution. Importantly, the membrane protein studied is in its(More)
Efficient reconstitution of membrane proteins for functional analyses can be achieved by dilution of a ternary mixture containing proteins, lipids and detergents. Once the dilution reaches the point where the free detergent concentration would become lower than the critical micellar concentration, detergent is recruited from the bound detergent pool, and(More)
Structural information on membrane proteins is sparse, yet they represent an important class of proteins that is encoded by about 30% of all genes. Progress has primarily been achieved with bacterial proteins, but efforts to solve the structure of eukaryotic membrane proteins are also increasing. Most of the structures currently available have been obtained(More)
  • 1