H. Vincent Poor

Learn More
The presence of both multiple-access interference (MAI) and intersymbol interference (ISI) constitutes a major impediment to reliable communications in multipath code-division multiple-access (CDMA) channels. In this paper, an iterative receiver structure is proposed for decoding multiuser information data in a convolutionally coded asynchronous multipath(More)
This paper investigates the maximal channel coding rate achievable at a given blocklength and error probability. For general classes of channels new achievability and converse bounds are given, which are tighter than existing bounds for wide ranges of parameters of interest, and lead to tight approximations of the maximal achievable rate for blocklengths(More)
Physical (PHY) layer security approaches for wireless communications can prevent eavesdropping without upper layer data encryption. However, they are hampered by wireless channel conditions: absent feedback, they are typically feasible only when the source-destination channel is better than the source-eavesdropper channel. Node cooperation is a means to(More)
Performance analysis of the minimum-mean-squareerror (MMSE) linear multiuser detector is considered in an environment of nonorthogonal signaling and additive white Gaussian noise. In particular, the behavior of the multiple-access interference (MAI) at the output of the MMSE detector is examined under various asymptotic conditions, including: large(More)
The problem of blind demodulation of multiuser information symbols in a high-rate code-division multiple-access (CDMA) network in the presence of both multiple-access interference (MAI) and intersymbol interference (ISI) is considered. The dispersive CDMA channel is first cast into a multipleinput multiple-output (MIMO) signal model framework. By applying(More)
The performance of collaborative beamforming is analyzed using the theory of random arrays. The statistical average and distribution of the beampattern of randomly generated phased arrays is derived in the framework of wireless ad hoc sensor networks. Each sensor node is assumed to have a single isotropic antenna and nodes in the cluster collaboratively(More)
Spectrum sensing is an essential functionality that enables cognitive radios to detect spectral holes and to opportunistically use under-utilized frequency bands without causing harmful interference to legacy (primary) networks. In this paper, a novel wideband spectrum sensing technique referred to as <i>multiband</i> <i>joint</i> <i>detection</i> is(More)
UWB technology provides an excellent means for wireless positioning due to its high resolution capability in the time domain. Its ability to resolve multipath components makes it possible to obtain accurate location estimates without the need for complex estimation algorithms. In this article, theoretical limits for TOA estimation and TOA-based location(More)
Distributed estimation based on measurements from multiple wireless sensors is investigated. It is assumed that a group of sensors observe the same quantity in independent additive observation noises with possibly different variances. The observations are transmitted using amplify-and-forward (analog) transmissions over nonideal fading wireless channels(More)