Learn More
The reactivity pattern of small (approximately 10 to 20 atoms) anionic aluminum clusters with oxygen has posed a long-standing puzzle. Those clusters with an odd number of atoms tend to react much more slowly than their even-numbered counterparts. We used Fourier transform ion cyclotron resonance mass spectrometry to show that spin conservation(More)
Whereas boron has many hydrides, aluminum has been thought to exhibit relatively few. A combined anion photoelectron and density functional theory computational study of the Al4H-6 anion and its corresponding neutral, Al4H6, showed that Al4H6 can be understood in terms of the Wade-Mingos rules for electron counting, suggesting that it may be a borane(More)
Using the electronic shell closure criteria, we propose a new electron counting rule that enables us to predict the size, composition, and structure of many hitherto unknown magic clusters consisting of hydrogen and aluminum atoms. This rule, whose validity is established through a synergy between first-principles calculations and anion-photoelectron(More)
Compelling evidence for band-type conductivity and even bulk superconductivity below Tc approximately 8 K has been found in (69,71)Ga NMR experiments in crystalline ordered, giant Ga84 cluster compounds. This material appears to represent the first realization of a theoretical model proposed by Friedel in 1992 for superconductivity in ordered arrays of(More)
  • 1