Learn More
T-type Ca(2+) currents have been proposed to be involved in the genesis of spike-and-wave discharges, a sign of absence seizures, but direct evidence in vivo to support this hypothesis has been lacking. To address this question, we generated a null mutation of the alpha(1G) subunit of T-type Ca(2+) channels. The thalamocortical relay neurons of the(More)
The Ca(2+) channel alpha(1A)-subunit is a voltage-gated, pore-forming membrane protein positioned at the intersection of two important lines of research: one exploring the diversity of Ca(2+) channels and their physiological roles, and the other pursuing mechanisms of ataxia, dystonia, epilepsy, and migraine. alpha(1A)-Subunits are thought to support both(More)
Although T-type Ca(2+) channels are implicated in nociception, the function of specific subtypes has not been well defined. Here, we compared pain susceptibility in mice lacking Ca(V)3.2 subtype of T-type Ca(2+) channels (Ca(V)3.2(-/-)) with wild-type littermates in various behavioral models of pain to explore the roles of Ca(V)3.2 in the processing of(More)
Calcium influx through N-type calcium channels mediates synaptic transmission at numerous central synapses and transduces nociceptive information in the spinal dorsal horn. However, the precise role of N-type calcium channels in pain perception is not fully elucidated. To address this issue, we generated and analyzed knockout mice for alpha(1B,) the(More)
During development of the cerebral cortex, the invasion of thalamic axons and subsequent differentiation of cortical neurons are tightly coordinated. Here we provide evidence that glutamate neurotransmission triggers a critical signaling mechanism involving the activation of phospholipase C-beta1 (PLC-beta1) by metabotropic glutamate receptors (mGluRs).(More)
Elimination of excess climbing fiber (CF)-Purkinje cell synapses during cerebellar development involves a signaling pathway that includes type 1 metabotropic glutamate receptor, Galphaq, and the gamma isoform of protein kinase C. To identify phospholipase C (PLC) isoforms involved in this process, we generated mice deficient in PLCbeta4, one of two major(More)
Phospholipase C-beta1 (PLC-beta1) is a rate-limiting enzyme implicated in postnatal-cortical development and neuronal plasticity. PLC-beta1 transduces intracellular signals from specific muscarinic, glutamate and serotonin receptors, all of which have been implicated in the pathogenesis of schizophrenia. Here, we present data to show that PLC-beta1 knockout(More)
A variety of extracellular signals are transduced across the cell membrane by the enzyme phosphoinositide-specific phospholipase C-beta (PLC-beta) coupled with guanine-nucleotide-binding G proteins. There are four isoenzymes of PLC-beta, beta1-beta4, but their functions in vivo are not known. Here we investigate the role of PLC-beta1 and PLC-beta4 in the(More)
Activation of metabotropic glutamate receptors (mGluRs) produces multiple effects in cortical neurons, resulting in the emergence of network activities including epileptiform discharges. The cellular mechanisms underlying such network responses are largely unknown. We examined the properties of group I mGluR-mediated cellular responses in CA3 neurons and(More)
To define the physiological role of IP(3)3-kinase(A) in vivo, we have generated a mouse strain with a null mutation of the IP(3)3-kinase(A) locus by gene targeting. Homozygous mutant mice were fully viable, fertile, apparently normal, and did not show any morphological anomaly in brain sections. In the mutant brain, the IP4 level was significantly decreased(More)