H. Rheinallt Parri

Learn More
Astrocytes respond to chemical, electrical and mechanical stimuli with transient increases in intracellular calcium concentration ([Ca2+]i). We now show that astrocytes in situ display intrinsic [Ca2+]i oscillations that are not driven by neuronal activity. These spontaneous astrocytic oscillations can propagate as waves to neighboring astrocytes and(More)
The action of ethosuximide (ETX) on Na+, K+, and Ca2+ currents and on tonic and burst-firing patterns was investigated in rat and cat thalamic neurons in vitro by using patch and sharp microelectrode recordings. In thalamocortical (TC) neurons of the rat dorsal lateral geniculate nucleus (LGN), ETX (0.75-1 mM) decreased the noninactivating Na+ current,(More)
In relaxed wakefulness, the EEG exhibits robust rhythms in the alpha band (8-13 Hz), which decelerate to theta (approximately 2-7 Hz) frequencies during early sleep. In animal models, these rhythms occur coherently with synchronized activity in the thalamus. However, the mechanisms of this thalamic activity are unknown. Here we show that, in slices of the(More)
Astrocytes in the rat thalamus display spontaneous [Ca(2+)](i) oscillations that are due to intracellular release, but are not dependent on neuronal activity. In this study we have investigated the mechanisms involved in these spontaneous [Ca(2+)](i) oscillations using slices loaded with Fluo-4 AM (5 microM) and confocal microscopy. Bafilomycin A1(More)
In the absence of external stimuli, the mammalian brain continues to display a rich variety of spontaneous activity. Such activity is often highly stereotypical, is invariably rhythmic, and can occur with periodicities ranging from a few milliseconds to several minutes. Recently, there has been a particular resurgence of interest in fluctuations in brain(More)
The properties of the Na+ current present in thalamocortical neurons of the dorsal lateral geniculate nucleus were investigated in dissociated neonate rat and cat neurons and in neurons from slices of neonate and adult rats using patch and sharp electrode recordings. The steady-state activation and inactivation of the transient Na+ current (INa) was well(More)
Aberrant amyloid-β peptide (Aβ) accumulation along with altered expression and function of nicotinic acetylcholine receptors (nAChRs) stand prominently in the etiology of Alzheimer's disease (AD). Since the discovery that Aβ is bound to α7 nAChRs under many experimental settings, including post-mortem AD brain, much effort has been expended to understand(More)
During development, astrocytes in the ventrobasal thalamus display spontaneous intracellular calcium [Ca(2+)](i) oscillations, that can lead to the excitation of adjacent thalamocortical neurons via an NMDA receptor-mediated mechanism. In this study, we show that while astrocytes usually exhibit oscillations of irregular amplitude and frequency, a subset of(More)
The rodent ventrobasal (VB) thalamus contains a relatively uniform population of thalamocortical (TC) neurons that receive glutamatergic input from the vibrissae and the somatosensory cortex, and inhibitory input from the nucleus reticularis thalami (nRT). In this study we describe γ-aminobutyric acid (GABA)(A) receptor-dependent slow outward currents(More)
1 species, these somatosensory rhythms occur synchronously with rhythmic bursting in thalamic neurons (Bou-2 Research Group of Neurobiology aging (fMRI), which show a correlation between EEG ␣ band power and thalamic metabolic activity (Larson et Hungarian Academy of Sciences Pá zmá ny P. Budapest Hungary During drowsiness, a scenario which is considered to(More)