H. Pulapaka

  • Citations Per Year
Learn More
AbstraeL The nonrevisiting path conjecture for polytopes, which is equivalent to the Hirsch conjecture, is open. However, for surfaces, the nonrevisiting path conjecture is known to be true for polyhedral maps on the sphere, projective plane, toms, and a Klein bottle. Barnette has provided counterexamples on the orientable surface of genus 8 and(More)
The non-revisiting path conjecture for polytopes, which is equivalent to the Hirsch conjecture, is open. However, for polyhedral maps on surfaces, we have recently proved the conjecture false for all orientable surfaces of genus g/> 2 and all nonorientable surfaces of nonorientable genus h/>4. In this paper, a unified, elementary proof of the non-revisiting(More)
  • 1