H P Vornlocher

Learn More
The mammalian translation initiation factor 3 (eIF3), is a multiprotein complex of approximately 600 kDa that binds to the 40 S ribosome and promotes the binding of methionyl-tRNAi and mRNA. cDNAs encoding 5 of the 10 subunits, namely eIF3-p170, -p116, -p110, -p48, and -p36, have been isolated previously. Here we report the cloning and characterization of(More)
Only five of the nine subunits of human eukaryotic translation initiation factor 3 (eIF3) have recognizable homologs encoded in the Saccharomyces cerevisiae genome, and only two of these (Prt1p and Tif34p) were identified previously as subunits of yeast eIF3. We purified a polyhistidine-tagged form of Prt1p (His-Prt1p) by Ni2+ affinity and gel filtration(More)
Translation initiation factor eIF3 is a multisubunit protein complex required for initiation of protein biosynthesis in eukaryotic cells. The complex promotes ribosome dissociation, the binding of the initiator methionyl-tRNA to the 40 S ribosomal subunit, and mRNA recruitment to the ribosome. In the yeast Saccharomyces cerevisiae eIF3 comprises up to 8(More)
Eukaryotic translation initiation factor 3 (eIF3) is a large multisubunit complex that plays a central role in the initiation of translation. It binds to 40 S ribosomal subunits resulting in dissociation of 80 S ribosomes, stabilizes initiator methionyl-tRNA binding to 40 S subunits, and is required for mRNA binding. eIF3 has an aggregate molecular mass of(More)
The 10Sa RNA gene of Thermus thermophilus was isolated and sequenced. The tRNA-like structure at the 5' and 3' ends and other secondary structure features of the T. thermophilus 10Sa RNA are similar to E. coli 10Sa RNA. A variant of the sequence motif coding for the tag peptide is located in the centre of T. thermophilus 10Sa RNA.
Eukaryotic translation initiation factor-3 (eIF3) is a large multisubunit complex that binds to the 40 S ribosomal subunit and promotes the binding of methionyl-tRNAi and mRNA. The molecular mechanism by which eIF3 exerts these functions is incompletely understood. We report here the cloning and characterization of TIF35, the Saccharomyces cerevisiae gene(More)
Translation initiation factor 2 (IF2) is one of three protein factors required for initiation of protein synthesis in eubacteria. The protein is responsible for binding the initiator RNA to the ribosomal P site. IF2 is a member of the GTP GDP-binding protein superfamily. In the extreme thermophilic bacterium Thermus thermophilus, IF2 was identified as a(More)
Initiation factor eIF3 plays a central role in the initiation pathway, influencing ribosome association, ternary complex binding to 40S subunits, and mRNA binding, in part through an interaction with eIF4F. We are attempting to clone and sequence DNAs encoding the subunits of this complex factor. Mammalian eIF3 comprises 10 subunits; full-length human cDNAs(More)
The structural gene for translation initiation factor IF2 from Thermus thermophilus was identified on the basis of the N-terminal amino acid sequence of intact T thermophilus IF2 and an internal 25 kDa IF2 fragment. A total of 5135 bp was cloned and sequenced, comprising the open reading frames for p15A, NusA, p10A, IF2, p10B and SecD, which may form an(More)
Eukaryotic translation initiation factors and their corresponding genes have been characterized using biochemical and genetic methods from a variety of different organisms. The designations of the factors relate to their apparent roles in the biochemical process. Many gene names indicate genetic interactions with other genes or the functional attributes(More)
  • 1