Learn More
We present an expansion of the classification of the family Papillomaviridae, which now contains 29 genera formed by 189 papillomavirus (PV) types isolated from humans (120 types), non-human mammals, birds and reptiles (64, 3 and 2 types, respectively). To accommodate the number of PV genera exceeding the Greek alphabet, the prefix "dyo" is used, continuing(More)
One hundred eighteen papillomavirus (PV) types have been completely described, and a yet higher number of presumed new types have been detected by preliminary data such as subgenomic amplicons. The classification of this diverse group of viruses, which include important human pathogens, has been debated for three decades. This article describes the(More)
Human papillomaviruses (HPVs) are described as "types" based on their genome sequences and identified by a number. For example, HPV-6 is associated with genital warts, and HPV-16 with anogenital cancers. The genomes of many HPV types have been reisolated, sequenced and compared to reference "prototypes" countless times by laboratories throughout the world.(More)
Genital human papillomaviruses (HPVs) are carcinogenic to humans and are associated with most cases of cervical cancer, genital and laryngeal warts, and certain cutaneous neoplastic lesions. Five of the more than 50 known genital HPV types, HPV-6, -11, -16, -18 and -31, have become the models to study gene expression. The comparison of the studies of these(More)
Among the more than one hundred formally described human papillomavirus (HPV) types, 18 are referred to as high-risk HPV types due to their association with anogenital cancer. Despite pathogenic similarities, these types form three remotely related taxonomic groups. One of these groups is called HPV species 9 and is formed by HPV-16, the most common and(More)
Cervical cancer, mainly caused by infection with human papillomaviruses (HPVs), is a major public health problem in Mexico. During a study of the prevalence of HPV types in northeastern Mexico, we identified, as expected from worldwide comparisons, HPV-16, 18, 31, and 35 as highly prevalent. It is well known that the genomes of HPV types differ(More)
DNA methylation contributes to the chromatin conformation that represses transcription of human papillomavirus type16 (HPV-16), which is prevalent in the etiology of cervical carcinoma. In an effort to clarify the role of this phenomenon in the regulation and carcinogenicity of HPV-16, 115 clinical samples were studied to establish the methylation patterns(More)
During progression of cervical cancer, human papillomavirus genomes and cellular tumor suppressor genes can become methylated. Toward a better understanding of these biomarkers, we studied 104 samples with HPV16, 18, 31, and 45 representing five pathological categories from asymptomatic infection to cancer. We grouped all samples by HPV type and pathology(More)
The tumour suppressor p53, involved in DNA repair, cell cycle arrest and apoptosis, also inhibits blood vessel formation, that is, angiogenesis, a process strongly contributing to tumour development. The p53 gene expresses 12 different proteins (isoforms), including TAp53 (p53 (or p53α), p53β and p53γ) and Δ133p53 isoforms (Δ133p53α, Δ133p53β and Δ133p53γ).(More)
  • H P Bernard
  • Journal of clinical virology : the official…
  • 2005
Human papillomaviruses (HPVs) are formally described by isolation of their circular double-stranded DNA genomes and establishment and comparison of the nucleotide sequence of these genomes. Alternatives such as serological diagnosis and maintenance of HPVs in culture are neither clinically useful nor consistently feasible. Novel HPV isolates have(More)