Learn More
We study the transport process of interacting Brownian particles in a tube of varying cross section. To describe this process we introduce a modified Fick-Jacobs equation, considering particles that interact through a hard-core potential. We were able to solve the equation with numerical methods for the case of symmetric and asymmetric cavities. We focused(More)
We derive and study a theoretical description for single-file diffusion, i.e., diffusion in a one-dimensional lattice of particles with hard core interaction. It is well known that for this system a tagged particle has anomalous diffusion for long times. The novelty of the present approach is that it allows for the derivation of correlations between a(More)
The quantum diffusion of a particle in an initially localized state on a cyclic lattice with N sites is studied. Diffusion and reconstruction time are calculated. Strong differences are found for even or odd number of sites and the limit N--> infinity is studied. The predictions of the model could be tested with microtechnology and nanotechnology devices.
A simple model of deposition of particles and growth of point islands in a two-dimensional substrate is introduced and studied. The detachment of particles from islands with an odd number of particles can occur with a probability P. The power-law scalings of the island, monomer, and odd island densities are analytically obtained and verified by Monte Carlo(More)
Recently a nonlinear Fick-Jacobs equation has been proposed for the description of transport and diffusion of particles interacting through a hard-core potential in tubes or channels of varying cross section [Suárez et al., Phys. Rev. E 91, 012135 (2015)]PLEEE81539-375510.1103/PhysRevE.91.012135. Here we focus on the analysis of the current and mobility(More)
The necklace model, which mimics the reptation of a chain of N beads in a square lattice, is used to study the drift velocity of charged linear polymers in gels under an applied electric field that periodically changes its direction. The characteristics of the model allow us to determine the effects of the alternating electric field on the chains' dynamics.(More)
We studied the transport process of overdamped Brownian particles, in a chain of asymmetric cavities, interacting through a hard-core potential. When a force is applied in opposite directions a difference in the drift velocity of the particles inside the cavity can be observed. Previous works on similar systems deal with the low-concentration regime, in(More)
We introduced two point island models with island disaggregation. In the first one, particles can detach from islands with an odd number of particles and from those with two particles. In the second model, particles can detach from all islands with more than two particles. The scaling exponents are analytically obtained and verified with Monte Carlo(More)
A nonlinear Fokker-Planck equation is obtained in the continuous limit of a one-dimensional lattice with an energy landscape of wells and barriers. Interaction is possible among particles in the same energy well. A parameter γ, related to the barrier's heights, is introduced. Its value is determinant for the functional dependence of the mobility and(More)