Learn More
The presence of brain edema, in its various forms, is an accompanying feature of many diseased states. Although the localized occurrence of brain edema may be demonstrated with MRI, the quantitative determination of absolute water content, an aspect that could play an important role in the objective evaluation of the dynamics of brain edema and the(More)
Quantitative mapping of water content, especially in the human brain, has the potential to provide important information for the study and diagnosis of diseases associated with a focal or global change in tissue water homeostasis. In the current work, an imaging method for the precise and accurate quantification of tissue water content is presented. The(More)
There is increasing evidence that the pathophysiology of hepatic encephalopathy is tightly associated with low-grade cerebral oedema; however, no method has yet specifically and unambiguously confirmed this hypothesis in vivo. The current study describes the quantitative measurement of localised water content using MRI in a cohort of 38 patients suffering(More)
Changes are shown in the spin-lattice (T1) relaxation time caused by the putative deposition of manganese in various brain regions of hepatic encephalopathy (HE) patients using a novel and fast magnetic resonance imaging (MRI) method for quantitative relaxation time mapping. A new method, T1 mapping with partial inversion recovery (TAPIR), was used to(More)
We present a simple and robust method for the automated image analysis of quantitative cerebral water content maps acquired with MRI. The method is based on a new approach for the absolute and quantitative mapping of water content in vivo. Water content maps were automatically segmented into grey and white matter by employing the quantitative T1 information(More)
This article describes a methodology for determining the precision of a recently published method for quantitative water content mapping using MRI. A framework for calculating the random error component as a function of sequence parameters is provided and predictions are compared with experimental results obtained in a phantom. The experimental and(More)
The use of tissue water as a concentration standard in proton magnetic resonance spectroscopy ((1)H-MRS) of the brain requires that the water proton signal be adjusted for relaxation and partial volume effects. While single voxel (1)H-MRS studies have often included measurements of water proton T(1), T(2), and density based on additional (1)H-MRS(More)
  • M I Adamovich, Yu A Alexandrov, D Barberis, M Beck, C B Erat, W Beusch +56 others
  • 1997
Inclusive cross sections for ? hyperon production in high-energy ? , ? and neutron induced interactions were measured by the experiment WA89 at CERN. Secondary ? and ? beams with average momenta of 345 GeV=c and a neutron beam of average momentum 65 GeV=c were produced by primary protons of 450 GeV=c from the CERN SPS. Both single and double diierential(More)
The current study investigates the whole brain myelin water content distribution applying a new approach that allows for the simultaneous mapping of total and relative myelin water content, T 1 and T 2* with full brain coverage and high resolution (1 × 1 × 2 mm(3)). The data was collected at two different sites in healthy controls to validate the(More)
We present an algorithm for the fast mapping of myelin water content using standard multiecho gradient echo acquisitions of the human brain. The method extents a previously published approach for the simultaneous measurement of brain T(1), T(2)(*) and total water content. Employing the multiexponential T(2)(*) decay signal of myelinated tissue, myelin water(More)