H. M. R. Alves

Learn More
Exciton diffusion is at the heart of most organic optoelectronic devices' operation, and it is currently the most limiting factor to their achieving high efficiency. It is deeply related to molecular organization, as it depends on intermolecular distances and orbital overlap. However, there is no clear guideline for how to improve exciton diffusion with(More)
The electronic properties of interfaces between two different solids can differ strikingly from those of the constituent materials. For instance, metallic conductivity-and even superconductivity-have recently been discovered at interfaces formed by insulating transition-metal oxides. Here, we investigate interfaces between crystals of conjugated organic(More)
Single-crystal field-effect transistors (FETs) based on a fluorocarbon-substituted dicyanoperylene-3,4:9,10-bis(dicarboximide) [PDIF-CN(2)] were fabricated by lamination of the semiconductor crystal on Si-SiO(2)/PMMA-Au gate-dielectric-contact substrates. These devices were characterized both in vacuum and in the air, and they exhibit electron mobilities of(More)
Organic semiconductors have unique optical, mechanical and electronic properties that can be combined with customized chemical functionality. In the crystalline form, determinant features for electronic applications, such as molecular purity, the charge mobility or the exciton diffusion length, reveal a superior improved performance when compared with(More)
The efficiency of organic photodetectors and optoelectronic devices is strongly limited by exciton diffusion, in particular for acceptor materials. Although mechanisms for exciton diffusion are well established, their correlation to molecular organization in real systems has received far less attention. In this report, organic single-crystals interfaces(More)
Transparent and flexible electrodes are widely used on a variety of substrates such as plastics and glass. Yet, to date, transparent electrodes on a textile substrate have not been explored. The exceptional electrical, mechanical and optical properties of monolayer graphene make it highly attractive as a transparent electrode for applications in wearable(More)
The objective of this work is to define procedures to improve spatial resolution of SRTM data and to evaluate their applicability in the Serra Negra region, in the district of Patrocínio, state of Minas Gerais in Brazil. The region's structure is a result of past tectonic processes that have arched it into a dome shape. Besides the already existing(More)
  • 1