H Lee Sweeney

Learn More
Microenvironments appear important in stem cell lineage specification but can be difficult to adequately characterize or control with soft tissues. Naive mesenchymal stem cells (MSCs) are shown here to specify lineage and commit to phenotypes with extreme sensitivity to tissue-level elasticity. Soft matrices that mimic brain are neurogenic, stiffer matrices(More)
Contractile myocytes provide a test of the hypothesis that cells sense their mechanical as well as molecular microenvironment, altering expression, organization, and/or morphology accordingly. Here, myoblasts were cultured on collagen strips attached to glass or polymer gels of varied elasticity. Subsequent fusion into myotubes occurs independent of(More)
Myosin V is an unconventional myosin proposed to be processive on actin filaments, analogous to kinesin on a microtubule [Mehta, A. D., et al. (1999) Nature (London) 400, 590-593]. To ascertain the unique properties of myosin V that permit processivity, we undertook a detailed kinetic analysis of the myosin V motor. We expressed a truncated, single-headed(More)
Although murine X-linked muscular dystrophy (mdx) and Duchenne muscular dystrophy (DMD) are genetically homologous and both characterized by a complete absence of dystrophin, the limb muscles of adult mdx mice suffer neither the detectable weakness nor the progressive degeneration that are features of DMD. Here we show that the mdx mouse diaphragm exhibits(More)
Aging skeletal muscles suffer a steady decline in mass and functional performance, and compromised muscle integrity as fibrotic invasions replace contractile tissue, accompanied by a characteristic loss in the fastest, most powerful muscle fibers. The same programmed deficits in muscle structure and function are found in numerous neurodegenerative syndromes(More)
Nonsense mutations promote premature translational termination and cause anywhere from 5-70% of the individual cases of most inherited diseases. Studies on nonsense-mediated cystic fibrosis have indicated that boosting specific protein synthesis from <1% to as little as 5% of normal levels may greatly reduce the severity or eliminate the principal(More)
The diffusive mobility of solutes chemically connected by reversible reactions in cells is analyzed as a problem of facilitated diffusion. By this term we mean that the diffusive flux of any substance, X, which is in one metabolic pathway, is effectively increased when it participates in a second and equilibrium reaction with another substance Y because the(More)
Myosin VI is a molecular motor involved in intracellular vesicle and organelle transport. To carry out its cellular functions myosin VI moves toward the pointed end of actin, backward in relation to all other characterized myosins. Myosin V, a motor that moves toward the barbed end of actin, is processive, undergoing multiple catalytic cycles and mechanical(More)
Myosins and kinesins are molecular motors that hydrolyse ATP to track along actin filaments and microtubules, respectively. Although the kinesin family includes motors that move towards either the plus or minus ends of microtubules, all characterized myosin motors move towards the barbed (+) end of actin filaments. Crystal structures of myosin II (refs 3-6)(More)
The regulatory light chain of myosin (RLC) is phosphorylated in striated muscles by Ca2+/calmodulin-dependent myosin light chain kinase. Unique biochemical and cellular properties of this phosphorylation system in fast-twitch skeletal muscle maintain RLC in the phosphorylated form for a prolonged period after a brief tetanus or during low-frequency(More)