Learn More
BACKGROUND High intensity focused ultrasound (HIFU) is an emerging non-invasive treatment modality for localized treatment of cancers. While current clinical strategies employ HIFU exclusively for thermal ablation of the target sites, biological responses associated with both thermal and mechanical damage from focused ultrasound have not been thoroughly(More)
BACKGROUND: There is a continued need to develop more effective cancer immunotherapy strategies. Exosomes, cell-derived lipid vesicles that express high levels of a narrow spectrum of cell proteins represent a novel platform for delivering high levels of antigen in conjunction with costimulatory molecules. We performed this study to test the safety,(More)
Despite advancements in therapeutic regimens, the prognosis remains poor for patients with malignant gliomas. Specificity has been an elusive goal for current modalities, but immunotherapy has emerged as a potential means of designing more tumor-specific treatments. Dendritic cells (DC) are the specialized antigen presenting cells of the immune system and(More)
Present clinical studies of active immunotherapy for malignancies using dendritic cells (DCs) require elucidation of the sites where DCs localize after injection. We evaluated the pattern of distribution of in vitro-generated, antigen-loaded, human DCs labeled with indium-111 oxyquinoline after i.v., s.c., and intradermal injection. Whereas the DCs injected(More)
BACKGROUND Cryopreservation of PBMC and/or overnight shipping of samples are required for many clinical trials, despite their potentially adverse effects upon immune monitoring assays such as MHC-peptide tetramer staining, cytokine flow cytometry (CFC), and ELISPOT. In this study, we compared the performance of these assays on leukapheresed PBMC shipped(More)
The ability to cryopreserve lymphocytes in peripheral blood mononuclear cells (PBMC) to retain their function after thawing is critical to the analysis of cancer immunotherapy studies. We evaluated a variety of cryopreservation strategies with the aim of developing an optimized protocol for freezing and thawing PBMC to retain viability and function. We(More)
The human epidermal growth factor receptor 2 (HER2) receptor tyrosine kinase (RTK) oncogene is an attractive therapeutic target for the treatment of HER2-addicted tumors. Although lapatinib, an FDA-approved small-molecule HER2 and epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI), represents a significant therapeutic advancement in the(More)
Although human epidermal growth factor receptor 2 (HER2) positive or estrogen receptor (ER) positive breast cancers are treated with clinically validated anti-HER2 or anti-estrogen therapies, intrinsic and acquired resistance to these therapies appears in a substantial proportion of breast cancer patients and new therapies are needed. Identification of(More)
Patients with HER2-overexpressing metastatic breast cancer, despite initially benefiting from the monoclonal antibody trastuzumab and the EGFR/HER2 tyrosine kinase inhibitor lapatinib, will eventually have progressive disease. HER2-based vaccines induce polyclonal antibody responses against HER2 that demonstrate enhanced anti-tumor activity when combined(More)
The Translational Research Working Group (TRWG) was created as a national initiative to evaluate the current status of the investment of National Cancer Institute in translational research and envision its future. The Translational Research Working Group conceptualized translational research as a set of six developmental processes or pathways focused on(More)