H. - J. Seitz

Learn More
The effect of different electron acceptors on substrate degradation was studied in pure and mixed cultures of various hydrogenotrophic homoacetogenic, methanogenic, sulfate-reducing, fumarate-reducing and nitrate-ammonifying bacteria. Two different species of these bacteria which during organic substrate degradation produce and consume hydrogen, were(More)
H2-oxidizing CO2-reducing acetogenic bacteria were isolated from gut contents of Nasutitermes nigriceps termites. Isolates were strictly anaerobic, Gram negative, endospore-forming, straight to slightly curved rods (0.5–0.8×2–8 μm) that were motile by means of lateral flagella. Cells were oxidase negative, but catalase positive and possessed a b-type(More)
The ethanol-oxidizing, proton-reducing Pelobacter acetylenicus was grown in chemostat cocultures with either Acetobacterium woodii, Methanobacterium bryantii, or Desulfovibrio desulfuricans. Stable steady state conditions with tightly coupled growth were reached at various dilution rates between 0.02 and 0.14 h-1. Both ethanol and H2 steady state(More)
Two of nine sulfate reducing bacteria tested,Desulfobulbus propionicus andDesulfovibrio desulfuricans (strain Essex 6), were able to grow with nitrate as terminal electron acceptor, which was reduced to ammonia. Desulfovibrio desulfuricans was grown in chemostat culture with hydrogen plus limiting concentrations of nitrate, nitrite or sulfate as sole energy(More)
The ethanol-oxidizing, proton-reducing Pelobacter acetylenicus was grown in chemostat cocultures with either Acetobacterium woodii, Methanobacterium bryantii, or Desulfovibrio desulfuricans. Stable steady state conditions with tightly coupled growth were reached at various dilution rates between 0.02 and 0.14 h1. Both ethanol and H2 steady state(More)
  • 1