Learn More
The availability of dense molecular markers has made possible the use of genomic selection (GS) for plant breeding. However, the evaluation of models for GS in real plant populations is very limited. This article evaluates the performance of parametric and semiparametric models for GS using wheat (Triticum aestivum L.) and maize (Zea mays) data in which(More)
doi: 10.1111/j.1399-3054.2006.00737.x In a field experiment, the effect of foliar Zn applications on the concentration of Zn in seeds of a bread wheat cultivar (Triticum aestivum L. cv. Balatilla) was studied during different stages of seed development. In addition, a staining method using dithizone (DTZ: diphenyl thiocarbazone) was applied to (1) study the(More)
About 32% of the 99 million ha wheat grown in developing countries experiences varying levels of drought stress. Three major drought types have been identified: Late drought (LD) is common in the Mediterranean region, early drought (ED) is found in Latin America and wheat is produced on residual soil moisture (RM) in the Indian subcontinent and part of(More)
Breeding new crop varieties with resistance to the biotic stresses that undermine crop yields is tantamount to increasing the amount and quality of biological capital in agriculture. However, the success of genes that confer resistance to pests induces a co-evolutionary response that depreciates the biological capital embodied in the crop, as pests evolve(More)
This special issue of Euphytica contains selected articles from talks given at the global symposium Challenges to International Wheat Improvement that was organized by the International Maize and Wheat Improvement Center (CIMMYT), in March 2006 at Obregon, Mexico, with support from the Australian Centre for International Agricultural Research (ACIAR). The(More)
Disease incidence and severity was studied for winter wheat variety Bezostaya 1 and susceptible checks based on data from international nurseries from 1969 to 2010 and from 51 countries across major winter wheat production regions totalling 1,047 reports. The frequency of leaf rust and stripe rust occurrence was stable over time with marked increases in(More)
The International Maize and Wheat Improvement Center (CIMMYT) acts as a catalyst and leader in a global maize and wheat innovation network that serves the poor in the developing world. Drawing on strong science and effective partnerships, CIMMYT researchers create, share, and use knowledge and technology to increase food security, improve the productivity(More)
The wheat area in developing countries, including China, is around 100 million ha. To address the needs of these very diverse wheat growing areas, CIMMYT has defined 12 wheat mega-environments (ME). A ME is defined as broad, not necessarily continuous often transcontinental area with similar biotic and abiotic stresses, cropping systems and consumer(More)
Wheat is fundamental to human civilization and has played an outstanding role in feeding a hungry world and improving global food security. The crop contributes about 20 % of the total dietary calories and proteins worldwide. Food demand in the developing regions is growing by 1 % annually and varies from 170 kg in Central Asia to 27 kg in East and South(More)
The main elements of the international wheat improvement program of the Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT), also known as the International Maize and Wheat Improvement Center, have been shuttle breeding at two contrasting locations in Mexico, wide adaptation, durable rust and Septoria resistances, international multisite testing,(More)