Learn More
Recent theoretical work has shown that a Quantum Computer (QC) has the potential of solving certain computationally hard problems such as factoring integers and searching databases much faster than a conventional computer. 1) 6) The idea that a QC might be more powerful than an ordinary computer is based on the notion that a quantum system can be in any(More)
We present a one-step algorithm to solve the time-dependent Maxwell equations for systems with spatially varying permittivity and permeability. We compare the results of this algorithm with those obtained from the Yee algorithm and from unconditionally stable algorithms. We demonstrate that for a range of applications the one-step algorithm may be orders of(More)
– We demonstrate that networks of locally connected processing units with a primitive learning capability exhibit behavior that is usually only attributed to quantum systems. We describe networks that simulate single-photon beam-splitter and Mach-Zehnder interferometer experiments on a causal, event-by-event basis and demonstrate that the simulation results(More)
The neotropical diamond weevil, Entimus imperialis, is marked by rows of brilliant spots on the overall black elytra. The spots are concave pits with intricate patterns of structural-coloured scales, consisting of large domains of three-dimensional photonic crystals that have a diamond-type structure. Reflectance spectra measured from individual scale(More)
Mature male Calopteryx japonica damselflies have dark-blue wings, due to darkly coloured wing membranes and blue reflecting veins. The membranes contain a high melanin concentration and the veins have a multilayer of melanin and chitin. Female and immature C. japonica damselflies have brown wings. We have determined the refractive index of melanin by(More)
Based on the Suzuki product-formula approach, we construct a family of unconditionally stable algorithms to solve the time-dependent Maxwell equations. We describe a practical implementation of these algorithms for one-, two-, and three-dimensional systems with spatially varying permittivity and permeability. The salient features of the algorithms are(More)
Birds-of-paradise are nature's prime examples of the evolution of color by sexual selection. Their brilliant, structurally colored feathers play a principal role in mating displays. The structural coloration of both the occipital and breast feathers of the bird-of-paradise Lawes' parotia is produced by melanin rodlets arranged in layers, together acting as(More)
The cover scales on the wing of the Emerald-patched Cattleheart butterfly, Parides sesostris, contain gyroid-type biological photonic crystals that brightly reflect green light. A pigment, which absorbs maximally at approximately 395 nm, is immersed predominantly throughout the elaborate upper lamina. This pigment acts as a long-pass filter shaping the(More)
The general conclusion of Seevinck and Larsson is that our model exploits the so-called coincidence-time loophole and produces sinusoidal (quantum-like) correlations but does not model the singlet state because it does not violate the relevant Bell inequality derived by Larsson and Gill, since in order to obtain the sinusoidal correlations the probability(More)