H. Alexander Ebhardt

Learn More
Recent advances in DNA-sequencing technology have made it possible to obtain large datasets of small RNA sequences. Here we demonstrate that not all non-perfectly matched small RNA sequences are simple technological sequencing errors, but many hold valuable biological information. Analysis of three small RNA datasets originating from Oryza sativa and(More)
There is a resurgence of interest in RNA secondary structure prediction problem (a.k.a. the RNA folding problem) due to the discovery of many new families of non-coding RNAs with a variety of functions. The vast majority of the computational tools for RNA secondary structure prediction are based on free energy minimization. Here the goal is to compute a(More)
Mass spectrometry is the method of choice for deep and reliable exploration of the (human) proteome. Targeted mass spectrometry reliably detects and quantifies pre-determined sets of proteins in a complex biological matrix and is used in studies that rely on the quantitatively accurate and reproducible measurement of proteins across multiple samples. It(More)
The manner by which genetic diversity within a population generates individual phenotypes is a fundamental question of biology. To advance the understanding of the genotype-phenotype relationships towards the level of biochemical processes, we perform a proteome-wide association study (PWAS) of a complex quantitative phenotype. We quantify the variation of(More)
  • 1